Have a personal or library account? Click to login
Spatial distribution of soil depth in relation to slope as a consequence of erosion-accumulation processes in loess lowland hills of Slovakia Cover

Spatial distribution of soil depth in relation to slope as a consequence of erosion-accumulation processes in loess lowland hills of Slovakia

Open Access
|Jul 2024

References

  1. Assouline, S., Ben-Hur, M., 2006. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. CATENA, 66 (3): 211–220. https://doi.org/10.1016/j.catena.2006.02.005
  2. Batista, P. V.G., Evans, D.L., Cândido, B.M., Fiener, P., 2023. Does soil thinning change soil erodibility? An exploration of long-term erosion feedback systems. SOIL, 9 (1): 71–88. https://doi.org/10.5194/soil-9-71-2023
  3. Bielek, P., 2008. Poľnohospodárske pôdy Slovenska a perspektívy ich využitia [Agricultural soils of Slovakia and perspectives of their using]. Bratislava: Výskumný ústav pôdoznalectva a ochrany pôdy. 140 p.
  4. Bielek, P., Šurina, P., 2000. Malý atlas pôd Slovenska [Small soil atlas of Slovakia]. Bratislava: Výskumný ústav pôdoznalectva a ochrany pôdy. 36 p.
  5. Biely, A., Bezák, V., Elečko, M., Gross, P., Kaličiak, M., Konečný, V., Lexa, J., Mello, J., Nemčok, J., Polák, M., Potfaj, M., Rakúz, M., Vass, D., Vozár, J., Vozárová, A., 2002. Geologická stavba (1: 500 000) [Geological structure]. In Atlas krajiny Slovenskej republiky. Bratislava: Ministerstvo životného prostredia SR; Banská Bystrica: Slovenská agentúra životného prostredia, p. 74–75.
  6. atko, M., Sobocká, J., 2009. Príručka pre používanie máp pôdnoekologických podmienok. Inovovaná príručka pre bonitáciu a hodnotenie poľnohospodárskych pôd Slovenska [Manual for the use of maps of soil ecological conditions. Updated manual for credit rating and evaluation of agricultural soils in Slovakia]. Bratislava: Výskumný ústav pôdoznalectva a ochrany pôdy. 101 p.
  7. Fu, Z., Li, Z., Cai, C., Shi, Z., Xu, Q., Wang, X., 2011. Soil thickness effect on hydrological and erosion characteristics under sloping lands: a hydropedological perspective. Geoderma, 167–168: 41–53. https://doi.org/10.1016/j.geoderma.2011.08.013
  8. Fulajtár, E., Janský, L., 2001. Vodná erózia pôdy a protierózna ochrana [Soil water erosion and erosion control]. Bratislava: Výskumný ústav pôdoznalectva a ochrany pôdy. 310 p.
  9. Govers, G., Poesen, J., 1988. Assessment of the interrill and rill contributions to total soil loss from an upland field plot. Geomorphology, 1 (4): 343–354. https://doi.org/10.1016/0169-555X(88)90006-2
  10. Guo, W., Luo, L., Li, H., Wang, W., Bai, Y., 2022. Runoff-and erosion-reducing effects of vegetation on the loess hillslopes of China under concentrated flow. International Soil and Water Conservation Research, 10 (4): 662–676. https://doi.org/10.1016/j.iswcr.2022.03.007
  11. Houben, P., 2008. Scale linkage and contingency effects of field-scale and hillslope-scale controls of long-term soil erosion: anthropogeomorphic sediment flux in agricultural loess watersheds of Southern Germany. Geo-morphology, 101 (1): 172–191. https://doi.org/10.1016/j.geomorph.2008.06.007
  12. Igaz, D., Šimanský, V., Horák, J., Kondrlová, E., Domanová, J., Rodný, M., Buchkina, N.P., 2018. Can a single dose of biochar affect selected soil physical and chemical characteristics? Journal of Hydrology and Hydromechanics, 66 (4): 421–428. https://doi.org/10.2478/johh-2018-0034
  13. Ilavská, B., Jambor, P., Lazúr, R., 2005. Identifikácia ohrozenia kvality pôdy vodnou a veternou eróziou a návrhy opatrení [Identification of threats to soil quality from water and wind erosion and proposals for action]. Bratislava: Výskumný ústav pôdoznalectva a ochrany pôdy. 60 p.
  14. Juráň, C., Jurčová, O., Malíšek, A., 1990. Modelovanie poľnohospodárskych sústav vrátane ochrany pôdy proti erózii. Výskumná správa [Modelling of agricultural systems, including soil erosion protection. Research report]. Bratislava: Výskumný ústav pôdoznalectva a ochrany pôdy. 22 p.
  15. Juřicová, A., Chuman, T., Žížala, D., 2022. Soil organic carbon content and stock change after half a century of intensive cultivation in a chernozem area. CATENA, 211: 105950. https://doi.org/10.1016/j.catena.2021.105950
  16. Kabała, C., Przybył, A., Krupski, M., Łabaz, B., Waroszewski, J., 2019. Origin, age and transformation of Chernozems in northern Central Europe – New data from Neolithic earthen barrows in SW Poland. CATENA, 180: 83–102. https://doi.org/10.1016/j.catena.2019.04.014
  17. Kenderessy, P., 2016. Accelerated soil erosion impacts on long-term changes in soil properties. Životné Prostredie, 50 (4): 255–227.
  18. Kirkby, M.J., Le Bissonais, Y., Coulthard, T.J., Daroussin, J., McMahon, M.D., 2000. The development of land quality indicators for soil degradation by water erosion. Agriculture, Ecosystems & Environment, 81 (2): article 2. https://doi.org/10.1016/S0167-8809(00)00186-9
  19. Klimowicz, Z., Uziak, S., 2001. The influence of long-term cultivation on soil properties and patterns in an undulating terrain in Poland. CATENA, 43 (3): 177–189. https://doi.org/10.1016/S0341-8162(00)00162-4
  20. Kołodyńska-Gawrysiak, R., Chodorowski, J., Mroczek, P., Plak, A., Zgłobicki, W., Kiebała, A., Trzciński, J., Standzikowski, K., 2017. The impact of natural and anthropogenic processes on the evolution of closed depressions in loess areas. A multi-proxy case study from Nałęczów Plateau, Eastern Poland. CATENA, 149: 1–18. https://doi.org/10.1016/j.catena.2016.07.029
  21. Kühn, P., Lehndorff, E., Fuchs, M., 2017. Lateglacial to Holocene pedogenesis and formation of colluvial deposits in a loess landscape of Central Europe (Wetterau, Germany). CATENA, 154: 118–135. https://doi.org/10.1016/j.catena.2017.02.015
  22. Labaz, B., Musztyfaga, E., Waroszewski, J., Bogacz, A., Jezierski, P., Kabala, C., 2018. Landscape-related transformation and differentiation of Chernozems – Catenary approach in the Silesian Lowland, SW Poland. CATENA, 161: 63–76. https://doi.org/10.1016/j.catena.2017.10.003
  23. Labaz, B., Waroszewski, J., Dudek, M., Bogacz, A., Kabala, C., 2022. Persistence of arable Chernozems and Chernic Rendzic Phaeozems in the eroded undulating loess plateau in Central Europe. CATENA, 216: 106417. https://doi.org/10.1016/j.catena.2022.106417
  24. Lang, A., 2003. Phases of soil erosion-derived colluviation in the loess hills of South Germany. CATENA, 51 (3): 209–221. https://doi.org/10.1016/S0341-8162(02)00166-2
  25. Liu, B., Xie, Y., Li, Z., Liang, Y., Zhang, W., Fu, S., Yin, S., Wei, X., Zhang, K., Wang, Z., Liu, Y., Zhao, Y., Guo, Q., 2020. The assessment of soil loss by water erosion in China. International Soil and Water Conservation Research, 8 (4): 430–439. https://doi.org/10.1016/j.iswcr.2020.07.002
  26. Liu, C., Liu, G., Li, H., Wang, X., Chen, H., Dan, C., Shen, E., Shu, C., 2021. Using ground-penetrating radar to investigate the thickness of mollic epipedons developed from loessial parent material. Soil and Tillage Research, 212: 105047. https://doi.org/10.1016/j.still.2021.105047
  27. Maglay, J., Pristaš, J., 2002. Kvartérny pokryv (1: 1 000 000) [Quaternary cover]. In Atlas krajiny Slovenskej republiky. Bratislava: Ministerstvo životného prostredia SR; Banská Bystrica: Slovenská agentúra životného pros-tredia. IV, 84.
  28. Mazúr, E., Činčura, E., Kvitkovič, J., 1980. Geomorfológia [Geomorphology]. In Atlas Slovenskej socialistickej republiky. Slovenská akadémia vied, Slovenský úrad geodézie a kartografie, p. 46–47.
  29. Musso, A., Ketterer, M. E., Greinwald, K., Geitner, C., Egli, M., 2020. Rapid decrease of soil erosion rates with soil formation and vegetation development in peri-glacial areas. Earth Surface Processes and Landforms, 45 (12): 2824–2839. https://doi.org/10.1002/esp.4932
  30. Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C. 2015. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54: 438–447. https://doi.org/10.1016/j.envsci.2015.08.012
  31. Papiernik, S.K., Lindstrom, M.J., Schumacher, T.E., Schumacher, J.A., Malo, D.D., Lobb, D.A., 2007. Characterization of soil profiles in a landscape affected by long-term tillage. Soil and Tillage Research, 93 (2): 335–345. https://doi.org/10.1016/j.still.2006.05.007
  32. Petlušová, V., Petluš, P., Ševčík, M., Hreško, J., 2021. The importance of environmental factors for the development of water erosion of soil in agricultural aand: the southern part of Hronská pahorkatina hill land, Slovakia. Agronomy, 11 (6): 1234. https://doi.org/10.3390/agronomy11061234
  33. Pristaš, J., Elečko, M., Maglay, J., Fordinál, K., Šimon, L., Gross, P., Polák, M., Havrila, M., Ivanička, M., Határ, J., Vozár, J., Tkáčová, H., Káč, J., Liščák, P., Jánová, V., Švasta, J., Remšík, A., Žáková, E., Töröková, I., 2000. Vysvetlivky ku geologickej mape Podunajskej nížiny (1: 50 000) [Geological map of the Danube lowland (1: 50 000)]. Bratislava: Štátny geologický ústav Dionýza Štúra.
  34. Rodzik, J., Mroczek, P., Wiśniewski, T., 2014. Pedological analysis as a key for reconstructing primary loess relief – A case study from the Magdalenian site in Klementowice (eastern Poland). CATENA, 117: 50–59. https://doi.org/10.1016/j.catena.2013.09.001
  35. Sebe, K., Csillag, G., Ruszkiczay-Rüdiger, Z., Fodor, L., Thamó-Bozsó, E., Müller, P., Braucher, R., 2011. Wind erosion under cold climate: a Pleistocene periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary). Geomorphology, 134 (3): 470–482. https://doi.org/10.1016/j.geomorph.2011.08.003
  36. Shen, H., Zheng, F., Wen, L., Han, Y., Hu, W., 2016. Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil and Tillage Research, 155: 429–436. https://doi.org/10.1016/j.still.2015.09.011
  37. Smetanová, A., Verstraeten, G., Notebaert, B., Dotterweich, M., Létal, A., 2017. Landform transformation and long-term sediment budget for a Chernozem-dominated lowland agricultural catchment. CATENA, 157: 24–34. https://doi.org/10.1016/j.catena.2017.05.007
  38. Societas Pedologica Slovaca, 2014. Morfogenetický klasifikačný systém pôd Slovenska: bazálna referenčná taxonómia [Morphogenetic soil classification system of Slovakia: basal reference taxonomy]. Bratislava: Výskumný ústav pôdoznalectva a ochrany pôdy. 96 p.
  39. Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. CATENA, 116: 173–184. https://doi.org/10.1016/j.catena.2013.12.015
  40. Tao, T., Han, Z., Li, Y., Gu, X., Chen, X., 2022. Effect of subsurface water flow depth on the rill erosion process on purple soil slopes. CATENA, 214: 106297. https://doi.org/10.1016/j.catena.2022.106297
  41. Terhorst, B., 2000. The influence of Pleistocene landforms on soil-forming processes and soil distribution in a loess landscape of Baden–Württemberg (south-west Germany). CATENA, 41 (1): 165–179. https://doi.org/10.1016/S0341-8162(00)00098-9
  42. Thematic Strategy for Soil Protection, 2006. [SEC(2006)620, SEC(2006)1165]. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. [cit. 2024-01-30]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52006 DC0231
  43. Tobiašová, E., Lemanowicz, J., Dębska, B., Kunkelová, M., Sakáč, J., 2023. The effect of reduced and conventional tillage systems on soil sggregates and rganic carbon parameters of different soil ypes. Agriculture, 13 (4): 8818. https://doi.org/10.3390/agriculture13040818
  44. Zádorová, T., Penížek, V., Lisá, L., Koubová, M., Žížala, D., Tejnecký, V., Drábek, O., Kodešová, R., Fér, M., Klement, A., Nikodem, A., Reyes Rojas, J., Vokurková, P., Pavlů, L., Vaněk, A., Moska, P., 2023. Formation of Colluvisols in different soil regions and slope positions (Czechia): stratification and upbuilding of colluvial profiles. CATENA, 221: 106755. https://doi.org/10.1016/j.catena.2022.106755
  45. Zádorová, T., Penížek, V., Šefrna, L., Drábek, O., Mihaljevič, M., Volf, Š., Chuman, T., 2013. Identification of Neolithic to Modern erosion–sedimentation phases using geochemical approach in a loess covered subcatchment of South Moravia, Czech Republic. Geoderma, 195–196: 56–69. https://doi.org/10.1016/j.geoderma.2012.11.012
  46. Zhidkin, A., Gennadiev, A., Fomicheva, D., Shamshurina, E., Golosov, V., 2023. Soil erosion models verification in a small catchment for different time windows with changing cropland boundary. Geoderma, 430: 116322. https://doi.org/10.1016/j.geoderma.2022.116322
DOI: https://doi.org/10.2478/foecol-2024-0019 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 196 - 207
Submitted on: May 15, 2024
Accepted on: Jun 11, 2024
Published on: Jul 29, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Viera Petlušová, Juraj Hreško, Peter Mederly, Marek Moravčík, Peter Petluš, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.