Have a personal or library account? Click to login
Indicators of restoration in beech stands after air pollution: trees and macromycetes Cover

Indicators of restoration in beech stands after air pollution: trees and macromycetes

By: Milan Barna and  Ivan Mihál  
Open Access
|Jul 2024

References

  1. Annual Report, 2021. Edited by SLOVALCO, a. s., Žiar nad Hronom. 117 p. [cited 2024-05-19]. https://www.slovalco.sk/wp-content/uploads/Vyrocna-sprava-2021.pdf
  2. Arnolds, E., 1981. Ecology and coenology of macrofungi in grasslands and moist heathlands in Drenthe, the Netherlands. Part 1. Introduction and synecology. Bibliotheca Mycologica, 83. Vaduz: Cramer. 410 p.
  3. Augustaitis, A., Kliučius, A., Marozas, V., Pilkauskas, M., Augustaitiene, I., Vitas, A., Staszewski, T., Jan-sons, A., Dreimanis, A., 2015. Sensitivity of European beech trees to unfavorable environmental factors on the edge and outside of their distribution range in northeastern Europe. iForest, 9: 259–269. DOI: https://doi.org/10.3832/ifor1398-008
  4. Bučinová, K., 2008. Makromycéty ako indikátory biodiverzity a ekologickej stability bukových lesných ekosystémov [Macromycetes as indicators of biodiversity and ecological stability of beech forest ecosystems]. PhD thesis. Zvolen: Ústav ekológie lesa SAV. 189 p. (In Slovak).
  5. Cale, J.A., Garrison-Johnston, M.T., Teale, S.A., Castello, J.D., 2017. Beech bark disease in North America: pver a century of research revisited. Forest Ecology and Management, 394: 86–103. https://doi.org/10.1016/j.foreco.2017.03.031
  6. Cicák, A., Kellerová, D., Kulfan, J., Mihál, I., 2011. Imisie ako škodlivý činiteľ porastoch [Immission as a harmful factor]. In Barna, M., Kulfan J., Bublinec, E. (eds). Buk a bukové ekosystémy Slovenska. Beech and beech ecosystems of Slovakia. Bratislava: VEDA, vyda vateľstvo SAV, p. 555–573.
  7. Cicák, A., Mihál, I., 1997. Metodika hodnotenia nekrotizácie kôry kmeňov buka [Methodology for the assessment of necrotic bark of beech stems]. Lesnictví-Forestry, 43: 104–110.
  8. Cicák A., Mihál, I., 2005. Development of beech necrotic disease in the growing phase of maturing stand under air pollution stress. Journal of Forest Science, 51: 101–107.
  9. Chazdon, R.L., Falk, D.A., Banin, L.F., Wagner, M., Wilson, S.J., Grabowski, R.C., Suding, K.N., 2021. The intervention continuum in restoration ecology: rethinking the active–passive dichotomy. Restoration Ecology. https://doi.org/10.1111/rec.13535
  10. Dighton, J., Jansen, A.E., 1991. Atmospheric pollutants and ectomycorrhizae: more questions than answers? Environmental Pollution, 73: 179–204.
  11. Dubová, M., Bublinec, E., 1994. Acid deposition and its chemistry. In Cicák, A. (ed.) Rámcové projekty nápravných opatrení vo vybraných oblastiach – Žiar nad Hronom [Framework projects for remedial actions in selected areas – Žiar nad Hronom]. Reference report. Zvolen: Ústav ekológie lesa SAV. 200 p. (In Slovak).
  12. Egli, S., 2011. Mycorrhizal mushroom diversity and productivity – an indicator of forest health? Annals of Forest Science, 68: 81–88.
  13. Eichhorn, J., Roskams, P., Potočić, N., Timmermann, V., Ferretti, M., Mues, V., Szepesi, A., Durrant, D., Seletković, I., Schröck, H.W., Nevalainen, S., Bussotti, F., Garcia, P., Wulff, S., 2020. Part IV: Visual assessment of crown condition and damaging agents.Version 2020-3. In UNECE ICP Forests Programme Coordinating Centre (ed.). Manual on methods and for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Eberswalde, Germany: Thünen Institute of Forest Ecosystems. 49 p.
  14. Eickenscheidt, N., Augustin, N.H., Wellbrock, N., 2019. Spatio-temporal modelling of forest monitoring data: modelling German tree defoliation data collected between 1989 and 2015 for trend estimation and survey grid examination using GAMMs. iForest, 12: 338–348. https://doi.org/10.3832/ifor2932-012
  15. Fodor, E., 2020. Summary bipartite networks: trees in Romanian forests – wood pathogenic and sapro-pathogenic fungi. Journal of Plant Pathology, 102: 89–102. https://doi.org/10.1007/s42161-019-00386-4
  16. Frey, S.D., Knorr, M., Parrent, J.L., Simpson, R.T., 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196: 159–171. https://doi.org/10.1016/j.foreco.2004.03.018
  17. García-Gil, J.C., Kobza, J., Soler-Rovina, R., Javoreková, S., 2013. Soil microbial and enzyme activities response to pollution near aluminium smelter. Clean – Soil, Air, Water, 41: 485–492. https://doi.org/10.1002/clen.201200099
  18. Georgieva, M., Petkova, M., Molle, E., 2024. Tree growth and vitality of a 33-year-old Douglas-fir provenance test in northwest Bulgaria. Folia Oecologica, 51: 175–185. https://doi.org/10.2478/foecol-2024-0017
  19. Hawryło, P., Bednarz, B., Wężyk, P., Szostak, M., 2018. Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sen tinel-2. European Journal of Remote Sensing, 51: 194–204. https://doi.org/10.1080/22797254.2017.1417745
  20. Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology, 54: 427–432.
  21. Hlôška, L., Saniga, M., Chovancová, G., Chovancová, B., Homolová, Z., 2022. Temporal and spatial changes in small mammal communities in a disturbed mountain forest. Folia Oecologica, 49: 9–22. https://doi.org/10.2478/foecol-2022-002
  22. Horemans, J.A., Bosela, M., Dobor, L., Barna, M., Bahyl, J., Deckmyn, G., Fabrika, M., Sedmak, R., Ceulemans, R., 2016. Variance decomposition of prediction of stem biomass increment for European beech: Contribution of selected sources of uncertainty. Forest Ecology and Management, 361: 46–55. https://doi.org/10.1016/j.foreco.2015.10.048
  23. Jamnická, G., Bučinová, K., Havranová, I., Urban, A., 2007. Current state of mineral nutrition and risk elements in a beech ecosystem situated near the aluminium smelter in Žiar nad Hronom, Central Slovakia. Forest Ecology and Management, 248: 26–35.
  24. Kałucka, I.L., Jagodziński, A.M., 2016. Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: A review. Dendro-biology, 76: 91–104. http://dx.doi.org/10.12657/denbio.076.009
  25. Kirk, P. (ed.) 2024. The CABI Bioscience Database of Fungal Names [online]. Kew, Great Britain. [cit. 2024-04-04]. http://www.indexfungorum.org
  26. Kontrišová, O., Holub, Z., 1991. Znečistenie Žiarskej kotliny fluórovými imisiami [Pollution of the Žiarska kotlina basin by fluorinated immissions]. In Sympozium chemie ’91. Ústí nad Labem, říjen 1991, Česká společnost prům. chemie. Sv. 2, Fluorová chemie. Ústí nad Labem: Dům techniky ČSVTS, p. 69–75. (In Slovak).
  27. Kowal, J., Arrigoni, E., Jarvis, S., Zappala, S., Forbes, E., Bidartondo, M.I., Suz, L.M., 2022. Atmospheric pollution, soil nutrients and climate effects on Mucoromycota arbuscular mycorrhizal fungi. Environmental Microbiology, 24: 3390–3404. https://doi.org/10.1111/1462-2920.16040
  28. Luptáková, E., Parák, M., Mihál, I., 2018. Structure of fungal communities (Ascomycota, Basidiomycota) in Western Carpathians submontane forest stands under different managements. Mycosphere, 9: 1053–1072. DOI: 10.5943/mycosphere/9/6/1
  29. Maňkovská, B., Steinnes, E., 1995. Effects of pollutants from an aluminium reduction plant on forest ecosystems. Science of the Total Environment, 163: 11–23. https://doi.org/10.1016/0048-9697(95)04489-N
  30. Margalef, R., 1958. Information theory in ecology. Gen Systematic, 3: 36–71.
  31. Merganič, J., Merganičová, K., Marušák, R., Tipmann, L., Šálek, L., Dragoun, L., Stolariková, R., 2016. Relation between forest stand diversity and anticipated log quality in managed Central European forests. International Journal of Biodiversity Science, Ecosystem Services & Management, 12: 128–138. https://doi.org/10.1080/21513732.2016.1150883
  32. Michel, A., Prescher, A.K., Schwärzel, K. (eds), 2020. Forest condition in Europe: the 2020 Assessment. ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). ICP Forests Technical Report, 2020. Online supplementary material. Eberswalde: Thünen Institute. 59 p. [cit. 2024-05-13]. http://icp-forests.net/page/icp-forests-technical-report
  33. Michel, A., Kirchner, T., Prescher, A.K., Schwärzel, K. (eds), 2023. Forest condition in Europe: the 2023 asessment. ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). ICP Forests Technical Report, 2023. Online supplementary material. Eberswalde: Thünen Institute. 48 p. [cit. 2024-05-13]. http://icp-forests.net/page/icp-forests-technical-report
  34. Michopoulos, P., Kostakis, M., Kaoukis, K., Bourletsikas, A., Solomou, A., Pasias, I., Thomaidis, N., 2023. Cycling and status of cobalt in some forest types. Folia Oecologica, 50: 72–79. https://doi.org/10.2478/foecol-2023-0006
  35. Mihál, I., Barna, M., 2022. Imisie fluórového typu z hlinikárne ako významný stresor pre mykobiotu [Fluorine-type imissions from the aluminium plant as a significant stressor for mycobiota]. Zprávy Lesnického Výzkumu, 67: 129–137.
  36. Mihál, I., Bučinová, K., 2005. Species diversity, abundance and dominance of macromycetes in beech forest stands. Journal of Forest Science, 51: 187–194.
  37. Mihál, I., Marušák, R., Barna, M., 2019. Dynamics of Fagus sylvatica L. necrotization under different pollutant load conditions. Polish Journal of Environmental Studies, 28: 2755–2763. https://doi.org/10.15244/pjoes/92209
  38. Mikulenka, P., Prokůpková, A., Vacek, Z., Vacek, S., Bulušek, D., Simon, J., Šimůnek, V., Hájek., V., 2020. Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Central European Forestry Joournal, 66: 23–36. https://doi.org/10.2478/forj-2019-0026
  39. Pavlík, P., 1997. Druhové spektrum makromycétov ako odraz imisnej záťaže bukových porastov [The macromycete species spectrum as a reflection of the immission load of beech stands]. In Križová, E., Kodrík, J.(eds). Les– drevo–životné prostredie ’97. Zborník. Zvolen: Technická univerzita vo Zvolene, p. 253–260.
  40. Ruotsalainen, A.L., Kozlov, M.V., 2006. Fungi and air pollution: Is there a general pattern? In Rhodes, D. (ed.). New topics in environmental research. New York: Nova Science Publishers, p. 57–103.
  41. Salerni, E., Barbato, D., Cazau, C., Gardin, L., Henson, G., Leonardi, P., Tomao, A., Perini, C., 2020. Selective thinning to enhance soil biodiversity in artificial black pine stands – what happens to mushroom fruiting? Annals of Forest Research, 63 (2): 75–90. https://doi.org/10.15287/afr.2020.2006
  42. Schwarz, M., Lalík, V.L., Vanek, M., Dado, M., Hnilica, R., 2009. Environmentálne vplyvy výroby hliníkaminulosť a súčastnosť [Environmental impacts of aluminium production – past and present]. Acta Facultatis Ecologiae, 21: 57–65.
  43. Shannon, C., Weaver, W., 1949. The mathematical theory of communication. Urbana, Illinois: University of Illinois Press.
  44. Sharma, R.P., Štefančík, I., Vacek, Z., Vacek, S., 2019. Generalized Nonlinear Mixed-Effects Individual Tree Diameter Increment Models for Beech Forests in Slovakia. Forests, 10: 451; https://doi.org/10.3390/f10050451
  45. Simpson, E.H., 1949. Measurement of diversity. Nature, 163: 688.
  46. Šmelko, Š., 2008. Methodical problems of the quantification of tree species diversity in forest ecosystems. Lesnícky Časopis – Forestry Journal, 54: 371–392.
  47. Štefančík, I., Mihál, I., 1993. Vplyv imisií na lesné porasty Žiarskej kotliny [The influence of immissions on the forest stands of the Žiarska kotlina basin]. Čistota Ovzdušia, 23: 7–15.
  48. Šušlík,V., Kulfan, J., 1993. Húsenice motýľov (Lepidoptera) ako indikátory a škodcovia buka v imisnej oblasti hliníkárne pri Žiari nad Hronom [Butterfly caterpillars (Lepidoptera) as indicators and pests of beech trees in the immission area of the aluminium plant near Žiar nad Hronom]. Lesnícky Časopis, 39: 387–394.
  49. Tóth, T., Kulich, J., Kopernická, M., Halásová, K., Lackóová, L., 2014. Environmental impact of sludge dumps to the quality of agricultural soils in region Žiar nad Hronom. Journal of the Polish Mineral Engineering Society, July-December: 67–72.
  50. Vacher, C., Piou, D., Desprez-Loustau, M.L., 2008. Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history. PLoS One, 3 (3): e1740. https://doi.org/10.1371/journal.pone.0001740
  51. van der Linde, S., Suz, L.M., Orme, C.D.L. et al. 2018. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 558: 243–248. https://doi.org/10.1038/s41586-018-0189-9
  52. Zábojníková, L., Oxikbayev, B., Korec, F., Nociar, P., Janiga, M., Haas, M., 2024. Mercury in Zhongar Alatau (Kazakhstan) and Carpathian mountains (Slovakia): songbirds and mice as indicators. Folia Oecologica, 51 (2): 154–164. https://doi.org/10.2478/foecol-2024-0015
  53. Žel, J., Schara, M., Svetek, J., Nemec, M., Gogala, N., 1993. Influence of aluminium on the membranes of mycorrhizal fungi. Water, Air and Pollution, 71: 101–109.
DOI: https://doi.org/10.2478/foecol-2024-0018 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 185 - 195
Submitted on: May 6, 2024
Accepted on: Jun 26, 2024
Published on: Jul 29, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Milan Barna, Ivan Mihál, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.