References
- B
äck , J., Aalto , J., Henrikkson , M., Hakola , H., He , Q., Boy , M., 2012. Chemodiversity of a Scots pine stand and implications for terpene air concentrations. Biogeo-sciences, 9: 689–702. https://doi.org/10.5194/bg-9-689-2012 - B
aier , P., Bader , R., Rosner , S., 1999. Monoterpene content and monoterpene emission of Norway spruce (Picea abies (L.) Karst.) bark in relation to primary attraction of bark beetles (Col. Scolytidae). In Physiology and genetics of tree-phytophage interactions: International symposium. Les Colloques /INRA, 90. Paris: INRA, p. 249–259. - B
lomquist , G.J., Figueroa -Teran , R., Aw , M., Song , M., Gorzalski , A., Abbott , N.L., Chang , E., Tittiger , C., 2010. Pheromone production in bark beetles. Insect Biochemistry and Molecular Biology, 40: 699–712. https://doi.org/10.1016/j.ibmb.2010.07.013 - B
ufler , U., Seufert , G., Jüttner , F., 1990. Monoterpene patterns of different tissues and plant parts of Norway spruce (Picea abies L. Karst.). Environmental Pollution, 68 : 367–375. https://doi.org/10.1016/0269-7491(90)90038-e - B
yers , J.A., Wood , D.L., 1981. Interspecific effects of pheromones on the attraction of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus in the laboratory. Journal of Chemical Ecology, 7: 9–18. https://doi.org/10.1007/bf00988631 - C
eledon , J.M., Bohlmann , J., 2019. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytologist, 224: 1444–1463. https://doi.org/10.1111/nph.15984 - C
eledon , J.M., Whitehil L, J.G.A., Madilao , L.L., Bohl mann , J., 2020. Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Scientific Reports, 10: 12464. https://doi.org/10.1038/s41598-020-69373-5 - D
uan , Q., Bonn , B., Kreuzwieser , J., 2020. Terpenoids are transported in the xylem sap of Norway spruce. Plant, Cell & Environment, 43: 1766–1778. https://doi.org/10.1111/pce.13763 - F
ranceschi , V.R., Krokene , P., Christiansen , E., Krekling , T., 2005. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytolo-gist, 167: 353–376. https://doi.org/10.1111/j.1469-8137.2005.01436.x - G
himire , B., Wiliams , C.A., Collatz , G.J., Vanderhoof , M., Rogan , J., Kulakowski , D., Masek , J.G., 2015. Large carbon release legacy from bark beetle outbreaks across Western United States. Global Change Biology, 21: 3087–3101. https://doi.org/10.1111/gcb.12933 - G
hirardo , A., Koch , K., Taipale , R., Zimmer , I., Sschnitzler , J.-P., Rinne , J., 2010. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS. Plant, Cell & Environment, 33: 781–792. https://doi.org/10.1111/j.1365-3040.2009.02104.x - G
itau , C.W., Bashford , R., Carnegie , A.J., Gurr , G.M., 2013. A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: a focus on beetle interactions with other pests and their associates. Forest Ecology and Management, 297: 1–14. https://doi.org/10.1016/j.foreco.2013.02.019 - G
ramber , W., Kreuzwieser , J., Wisthaler , A., Cojocariu , C., Graus , M., Rennenber , H., Steiger , D., Steinbrecher , R., Hansel , A., 2006. VOC emissions from Norway spruce (Picea abies L. [Karst]) twigs in the field—Results of a dynamic enclosure study. Atmospheric Environment, 40, Suppl. 1: 128–137. https://doi.org/10.1016/j.atmosenv.2006.03.043 - H
lásny , T., Zimová , S., Merganičová , K., Štepánek P., Modlinger , R., Turčáni , M., 2021. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. Forest Ecology and Management, 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075 - H
olopainen , J.K., Virjamo , V., Ghimire , R.P., Blande , J.D., Julkunen -Tiitto , R., Kivimäenpää , M., 2018. Climate Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. Frontiers in Plant Science, 9: 1445. https://doi.org/10.3389/fpls.2018.01445 - H
uang , J., Hammerbacher , A., Weinhold , A., Reichelt , M., Gleixner , G., Behrendt , T., Van Damm , N.M., Sala , A., Gershenzon , J., Trumbor E, S., Hartmann , H., 2018. Eyes on the future – evidence for trade-offs between growth, storage and defense in Norway spruce. New Phytologist, 222: 144–158. https://doi.org/10.1111/nph.15522 - J
akuš , R., Edwards -Jonášová , M., Cudlín , P., Bla ženec , M., Je žík , M., Havlíček , F., Moravec , I., 2011a. Characteristics of Norway spruce trees (Picea abies) surviving a spruce bark beetle (Ips typographus L.) outbreak. Trees, 25: 965–973 (2011). https://doi.org/10.1007/s00468-011-0571-9 - J
akuš , R., Grodzki , W., Je žík , M., Jachym , M., 2003. Definition of spatial patterns of bark beetle Ips typographus (L) outbreak spreading in Tatra Mountains (Central Europe) using GIS. In McManus, M.L., Liebhold, A.M. (eds). Proceedings: ecology survey and management of forest insects. General Technical Report NE, 311. USDA Forest Service, Northeastern Research Station, p. 25–32. - J
akuš , R., Zajíčkova , L., Cudlín , P., Bla ženec , M., Turčani , M., Je žík , M., Lieutier , F., Schlyter , F., 2011b. Landscape-scale Ips typographus attack dynamics: from monitoring plots to GIS-based disturbance models. iForest - Biogeosciences and Forestry, 4: 256–261. https://doi.org/10.3832/ifor0589-004 - J
anson , R.W., 1993. Monoterpene emissions from Scots pine and Norwegian spruce. Journal of GeophysicalRe-search: Atmospheres, 98: 2839–2850. https://doi.org/10.1029/92jd02394 - J
irošová , A., Kalinová , B., Modlinger , R., Jakuš , R., Unelius , C.R., Bla ženec , M., Schlyter , F., 2022. Anti-attractant activity of (+)-trans-4-thujanol for Eurasian spruce bark beetle <scp>Ips</scp> typographus: novel potency for females. Pest Management Science, 78: 1992–1999. https://doi.org/10.1002/ps.6819 - J
uráň , S., Pallozzi , E., Guidolotti , G., Fares , S., Šigut , L., Calfapietra , C., Alivernini , A., Savi , F., Večeřová , K., Křumal , K., Večeřa , Z., Urban , O., 2017. Fluxes of biogenic volatile organic compounds above temperate Norway spruce forest of the Czech Republic. Agricultural and Forest Meteorology, 232: 500–513. https://doi.org/10.1016/j.agrformet.2016.10.005 - K
autz , M., Schopf , R., Ohser , J., 2013. The “sun-effect”: microclimatic alterations predispose forest edges to bark beetle infestations. European Journal of Forest Research, 132: 453–465. https://doi.org/10.1007/s10342-013-0685-2 - K
empf , K., Allwine , E., Westberg , H., Claiborn , C., Lamb , B., 1996. Hydrocarbon emissions from spruce species using environmental chamber and branch enclosure methods. Atmospheric Environment, 30: 1381–1389. https://doi.org/10.1016/1352-2310(95)00462-9 - K
leist , E., Mentel , T.F., Andres , S., Bohne , A., Folkers , A., Kiendler -Scharr , A., Rudich , Y., Springer , M., Tillmann , R., Wildt , J., 2012. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences, 9: 5111–5123. https://doi.org/10.5194/bg-9-5111-2012 - K
limetzek , D., Francke , W., 1980. Relationship between the enantiomeric composition of α-pinene in host trees and the production of verbenols in Ips species. Experientia, 36: 1343–1345. https://doi.org/10.1007/BF01960087 - L
apin , M., Faako , P., Melo , M., Stastny , P., Tomlain , J., 2002. Climatic regions, 1: 1 000000. In Atlas krajiny Slovenskej republiky. Landscape atlas of the Slovak Republic. Bratislava: Ministerstvo životného prostredia SR; Banská Bystrica: Slovenská agentúra životného prostredia, p. IV, 95. - M
admony , A., Tognetti , R., Zamponi , L., Cappreti , P., Michelozzi , M., 2018. Monoterpene responses to interacting effects of drought stress and infection by the fungus Heterobasidion parviporum in two clones of Norway spruce (Picea abies). Environmental and Experimental Botany, 152: 137–148. https://doi.org/10.1016/j.envexpbot.2018.03.007 - M
ajdák , A., Jakuš , R., Bla ženec , M., 2021. Determination of differences in temperature regimes on healthy and bark-beetle colonised spruce trees using a handheld thermal camera. iForest - Biogeosciences and Forestry, 14: 203–211. https://doi.org/10.3832/ifor3531-014 - M
archese , J.A., Ferreira , J.F.S., Rehder , V.L.G., Rodrigues , O., 2010. Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). Brazilian Journal of Plant Physiology, 22: 1–9. https://doi.org/10.1590/s1677-04202010000100001 - M
arešová , J., Majdák , A., Jakuš , R., Hradecký , J., Kali -nová , B., Bla ženec , M., 2020. The short-term effect of sudden gap creation on tree temperature and volatile composition profiles in a Norway spruce stand. Trees, 34: 1397–1409. https://doi.org/10.1007/s00468-020-02010-w - M
ezei , P., Jakuš , R., Bla ženec , M., Belánová , S., Šmídt , J., 2011. Population dynamics of spruce bark beetle in a nature reserve in relation to stand edges conditions. Folia Oecologica, 38: 73–79. - M
ezei , P., Potterf , M., Škvarenina , J., Rasmussen , J.G., Jakuš , R., 2019. Potential solar radiation as a driver for bark beetle infestation on a landscape scale. Forests, 10: 604. https://doi.org/10.3390/f10070604 - M
oukhtar , S., Couret , C., Rouil , L., Simon , V., 2006. Biogenic Volatile Organic Compounds (BVOCs) emissions from Abies alba in a French forest. Science of The Total Environment, 354: 232–245. https://doi.org/10.1016/j.scitotenv.2005.01.044 - N
etherer , S., Hammerbacher , A., 2022. The Eurasian spruce bark beetle in a warming climate: phenology, behavior, and biotic interactions. In Bark beetle management, ecology, and climate change. London: Academic Press, p. 89–131. https://doi.org/10.1016/b978-0-12-822145-7.00011-8 - N
etherer , S., Kandasamy , D., Jirošová , A., Kalinová , B., Schebeck , M., Schlyter , F., 2021. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. Journal of Pest Science, 94: 591–614. https://doi.org/10.1007/s10340-021-01341-y - N
iinemets , Ü., 2015. Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiology, 36: 129-132. https://doi.org/10.1093/treephys/tpv128 - N
iinemets , Ü., 2010. Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends in Plant Science, 15: 145–153. https://doi.org/10.1016/j.tplants.2009.11.008 - N
ybakken , L., Floistad , I.S., Mageroy , M., Lomsdal , M., Stralberg , S., Krokene , P., Asplund , J., 2021. Constitutive and inducible chemical defences in nursery-grown and naturally regenerated Norway spruce (Picea abies) plants. Forest Ecology and Management, 491: 119180. https://doi.org/10.1016/j.foreco.2021.119180 - P
ersson , Y., Schurgers , G., Ekberg , A., Holst , T., 2016. Effects of intra-genotypic variation, variance with height and time of season on BVOC emissions. Meteorologische Zeitschrift, 25: 377–388. https://doi.org/10.1127/metz/2016/0674 - P
hillips , M.A., Croteau , R.B., 1999. Resin-based defenses in conifers. Trends in Plant Science, 4: 184–190. https://doi.org/10.1016/S1360-1385(99)01401-6 - R
aber , A.G., Peachey -Stoner , R.J., Cessna , S.G., Sider -hurst , M.S., 2021. Headspace GC-MS analysis of differences in intra- and interspecific Terpene profiles of Picea pungens Engelm. and P. abies (L.) Karst. Phytochemistry, 181: 112541. https://doi.org/10.1016/j.phytochem.2020.112541 - R
affa , K.F., Powell , E.N., Towsend , P.A., 2013. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proceedings of the National Academy of Sciences, 110: 2193–2198. https://doi.org/10.1073/pnas.1216666110 - R
asmann , S., Chassin , E., Bilat , J., Glauser G., Reymond , P., 2015. Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. Journal of Experimental Botany, 66: 2527–2534. https://doi.org/10.1093/jxb/erv033 - S
chiebe , C., Hammerbacher , A., Birgersson , G., Witzell , J., Brodelius , P.E., Gershenzon , J., Hansson , B.S., Krokene , P., Schlyter , F., 2012a. Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia, 170: 183–198. https://doi.org/10.1007/s00442-012-2298-8 - S
chiebe , C., 2012b. Attraction and resistance in the Picea abies – Ips typographus System. PhD thesis. Swedish University of Agricultural Sciences, Alnarp. 57 p. https://doi.org/10.13140/2.1.1229.1363 - S
chönwitz , R., Lohwasser , K., Kloos , M., Ziegler , H., 1990. Seasonal variation in the monoterpenes in needles of Picea abies (L.) Karst. Trees, 4: 34–40. https://doi.org/10.1007/bf00226238 - S
chütte , H.-R., 1984. Secondary plant substances. Monoterpenes. In Esser, K., Kubitzki, K., Runge, M., Schnepf, E., Ziegler, H. (eds). Progress in Botany / Fortschritte der Botanik: Morphology - Physiology - Genetics Taxonomy - Geobotany / Morphologie - Physiologie - Genetik Systematik - Geobotanik. Berlin, Heidelberg: Springer, p. 119–139. https://doi.org/10.1007/978-3-642-69985-6_9 - S
eybold , S.J., Huber , D.P.W., Lee , J.C., Graves , A.D., Bohlmann , J., 2006. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Reviews, 5: 143–178. https://doi.org/10.1007/s11101-006-9002-8 - S
ousa , M., Birgersson , G., Karlsson Green , K., Pollet , M., Becher , P.G., 2023. Odors attracting the long-legged predator Medetera signaticornis Loew to Ips typographus L. infested Norway spruce trees. Journal of Chemical Ecology, 49: 451–464. https://doi.org/10.1007/s10886-023-01405-6 - S
teinbecher , R., Ziegler , H., Eichstädter , G., Fehsenfeld , U., Gabriel , R., Kolb , Ch ., Rabong , R., Schönwitz , R., Schürmann , W., 1997. Monoterpene and isoprene emission in Norway spruce forests. In Biosphere-atmosphere exchange of pollutants and trace substances. Vol. 4. Berlin, Heidelberg: Springer, p. 352–365. https://doi.org/10.1007/978-3-662-03394-4_27 - S
tříbrská , B., Hradecký , J., Čepl , J., Tomášková , I., Jakuš , R., Modlinger , R., Netherer , S., Jirošová , A., 2022. Forest margins provide favourable microclimatic niches to swarming bark beetles, but Norway spruce trees were not attacked by Ips typographus shortly after edge creation in a field experiment. Forest Ecology and Management, 506: 119950. https://doi.org/10.1016/j.foreco.2021.119950 - S
zabó , K., Radácsi , P.,rajhárt , P., Ladányi , M., Németh , É., 2017. Stress-induced changes of growth, yield and bio-active compounds in lemon balm cultivars. Plant Physiology and Biochemistry, 119: 170–177. https://doi.org/10.1016/j.plaphy.2017.07.019 - T
urtola , S., Manninen , A.-M., Rikala , R., Kainulainen , P., 2003. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce Seedlings. Journal of Chemical Ecology, 29: 1981–1995. https://doi.org/10.1023/A:1025674116183 - V
an Meeningen , Y., Wang , M., Karlsson , T., Seifert , A., Schurgers , G., Rinnan , R., Holst , T., 2017. Isoprenoid emission variation of Norway spruce across a European latitudinal transect. Atmospheric Environment, 170: 45–57. https://doi.org/10.1016/j.atmosenv.2017.09.045 - V
on Rudollf , E., 1975. Volatile leaf oil analysis in chemo-systematic studies of North American conifers. Bio-chemical Systematics and Ecology, 2: 131–167. https://doi.org/10.1016/0305-1978(75)90055-1 - Y
assaa , N., Song , W., Lelieveld , J., Vanhatalo , A., Bäck , J., Williams , J., 2012. Diel cycles of isoprenoids in the emissions of Norway spruce, four Scots pine chemo-types, and in Boreal forest ambient air during Humppa-Copec-2010. Atmospheric Chemistry and Physics, 12: 7215–7229. https://doi.org/10.5194/acp-12-7215-2012 - Y
uvaraj , J.K., Roberts , R.E., Sonntag , Y., Hou , X.-Q., Grosse -wilde , E., Machara , A., Zhang , D.-D., Hans -son , B.S., Johanson , U., Löfstedt , C., Andersson , M.N., 2021. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biology, 19: article no. 16. https://doi.org/10.1186/s12915-020-00946-6 - Z
hao , T., Krokene , P., Björklund , N., Langström , B., Solheim , H., Christiansen , E., Borg -Karlson , A.-K., 2010. The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies. Phytochemistry, 71: 1332–1341. https://doi.org/10.1016/j.phytochem.2010.05.017 - Z
ulak , K.G., Lippert , D.N., Kuzyk , M.A., Domanski , D., Chou , T., Borchers , C.H., Bohlmann , J., 2009. Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi-level study of methyl jasmonate-treated Norway spruce (Picea abies). The Plant Journal, 60: 1015–1030. https://doi.org/10.1111/j.1365-313X.2009.04020