References
- Å
gren , G.I., Fagerström , T., Agren , G.I., Fagerstrom , T., 1984. Limiting dissimilarity in plants: Randomness prevents exclusion of species with similar competitive abilities. Oikos, 43 (3): 369. https://doi.org/10.2307/3544155 - B
addeley , A., Turner , R., Mateu , J., Bevan , A., 2013. Hybrids of Gibbs point process models and their implementation. Journal of Statistical Software, 55 (11): 1–43. https://doi.org/10.18637/jss.v055.i11 - B
en -Said , M., 2021. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecological Processes, 10 (1): 56. https://doi.org/10.1186/s13717-021-00314-4 - C
all , L.J., Nilsen , E.T., 2003. Analysis of spatial patterns and spatial association between the invasive tree-of-heaven (Ailanthus altissima) and the native Black Locust (Robinia pseudoacacia). The American Midland Naturalist, 150 (1): 1–14. https://doi.org/10.1674/0003-0031(2003)150[0001:AOSPAS]2.0.CO;2 - C
arl , C., Biber , P., Landgraf , D., Buras , A., Pretzsch , H., 2017. Allometric models to predict aboveground woody biomass of Black Locust (Robinia pseudoacacia L.) in short rotation coppice in previous mining and agri cultural areas in Germany. Forests, 8 (9): 328. https://doi.org/10.3390/f8090328 - C
arl , C., Lehmann , J., Landgraf , D., Pretzsch , H., 2019. Robinia pseudoacacia L. in short rotation coppice: seed and stump shoot reproduction as well as UAS-based spreading analysis. Forests, 10 (3): 235. https://doi.org/10.3390/f10030235 - C
hang , C.-S., Bongarten , B., Hamrick , J., 1998. Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. Journal of Plant Research, 111 (1): 17–24. https://doiorg/10.1007/BF02507146 - C
rosti , R., Agrillo , E., Ciccarese , L., Guarino , R., Paris , P., Testi , A., 2016. Assessing escapes from short rotation plantations of the invasive tree species Robinia pseudoacacia L. in Mediterranean ecosystems: a study in central Italy. IForest - Biogeosciences and Forestry, 9 (5): 822–828. https://doi.org/10.3832/ifor1526-009 - D
e la Cruz , M., 2008. Metodos para analizar datos puntuales [Techniques for analysis of point data]. In Maestre, F.T., Escudero, A., Bonet, A. (eds). Introduccion al analisis espacial de datos en ecologia y ciencias ambientales: metodos y aplicaciones, Asociacion Espanola de Ecologia Terrestre. Madrid: Universidad Rey Juan Carlos y Caja de Ahorros del Mediterraneo, p. 76–127. - D
ixon , P.M., 2002. Nearest-neighbor contingency table analysis of spatial segregation for several species. Écoscience, 9 (2): 142–151. https://doi.org/10.1080/11956860.2002.11682700 - ESRI, 2011. ArcGIS desktop: release 10. Redlands, CA, USA: Environmental Systems Research Institute.
- G
ongalsky , К.B., 2014. Lesnye pozhary i pochvennaya fauna [Wildfires and soil fauna]. Moskva: KMK. 169 p. - G
rese , R., 1991. The landscape architect and problem exotic plants. In Burley, J.B. (eds), Proceedings of the American Society of Landscape Architects’ Open Committee on Reclamation: Reclamation Diversity, San Diego, CA, USA, 29 October 1991. Washington, DC, USA: American Society of Landscape Architects, p. 7–15. - H
oloborodko , K.K., Sytnyk , S.A., Lovynska , V.M., Ivanko , I.A., Loza , I.M., Brygadyrenko , V.V., 2022. Impact of invasive species Parectopa robiniella (Gracillariidae) on fluorescence parameters of Robinia pseudoacacia in the conditions of the steppe zone of Ukraine. Regulatory Mechanisms in Biosystems, 13 (3): 324–330. https://doi.org/10.15421/022242 - H
untley , J.C., 1990. Robinia pseudacacia L. Black locust. In Burns, R.M., Honkala, B.H. (eds). Silvics of North America. Vol. 2. Hardwoods. Agriculture Handbook (United States. Department of Agriculture), no. 654. Washington, DC: United States Government Printing Office, p. 755–761. - I
vajnsic , D., Cousins , S., Kaligarič , M., 2012. Colonization by Robinia pseudoacacia of various soils and habitat types outside woodlands in a traditional Central-Europen agricultural landscape. Polish Journal of Ecology, 60: 301–309. - J
eník , J., 1994. Clonal growth in woody plants: a review. Folia Geobotanica et Phytotaxonomica, 29 (2): 291–306. https://doi.org/10.1007/BF02803802 - J
írová , A., Klaudisová , A., Prach , K., 2012. Spontaneous restoration of target vegetation in old-fields in a central European landscape: a repeated analysis after three decades. Applied Vegetation Science, 15 (2): 245–252. https://doi.org/10.1111/j.1654-109X.2011.01165.x - J
ung , S.-C., Matsushita , N., Wu , B.-Y., Kondo , N., Shiraishi , A., Hogetsu , T., 2009. Reproduction of a Robinia pseudoacacia population in a coastal Pinus thunbergii windbreak along the Kujukurihama Coast, Japan. Journal of Forest Research, 14 (2): 101–110. https://doi.org/10.1007/s10310-008-0109-1 - K
owarik , I., 1996. Funktionen klonalen Wachstums von Bäumen bei der Brachflächen-Sukzession unter besonderer Beachtung von Robinia pseudoacacia [Functions of clonal growth in trees during wasteland succession with special reference to Robinia pseudoacacia]. Verhandlungen der Gesellschaft für Okologie, 26: 173–181. - K
owarik , I., 2010. Biologische Invasionen: Neophyten und Neozoen in Mitteleuropa [Biological invasions: new plant and animal species in Central Europe]. Stuttgart, Germany: Ulmer. - K
owarik , I., Lippe , M., Cierjacks , A., 2013. Prevalence of alien versus native species of woody plants in Berlin differs between habitats and at different scales. Preslia, 85: 113–132. - K
rízsik , V., Körmöczi , L., 2000. Spatial spreading of Robinia pseudo-acacia and Populus alba clones in sandy habitats. Tiscia, 32: 3–8. - K
unakh , O.M., Ivanko , I.A., Holoborodko , K.K., Volkova , A.M., Zhukov , O.V., 2023. Age estimation of black locust (Robinia pseudoacacia) based on morphometric traits. Biosystems Diversity, 31 (2): 222–228. https://doi.org/10.15421/012324 - L
ovynska , V., Holoborodko , K., Ivanko , I., Sytnyk , S., Zhukov , O., Loza , I., Wiche , O., Heilmeier , H., 2023. Heavy metal accumulation by Acer platanoides and Robinia pseudoacacia in an industrial city (Northern Steppe of Ukraine). Biosystems Diversity, 31 (2): 246–253. https://doi.org/10.15421/012327 - M
aringer , J., Wohlgemuth , T., Neff , C., Pezzatti , G.B., Conedera , M., 2012. Post-fire spread of alien plant species in a mixed broad-leaved forest of the Insubric region. Flora - Morphology, Distribution, Functional Ecology of Plants, 207 (1): 19–29. https://doi.org/10.1016/j.flora.2011.07.016 - N
adal -Sala , D., Hartig , F., Gracia , C.A., Sabaté , S., 2019. Global warming likely to enhance black locust (Robinia pseudoacacia L.) growth in a Mediterranean riparian forest. Forest Ecology and Management, 449: 117448. https://doi.org/10.1016/j.foreco.2019.117448 - N
icolescu , V.-N., Rédei , K., Mason , W.L., Vor , T., Pöetzelsberger , E., Bastien , J.-C., … Pástor , M., 2020. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. Journal of Forestry Research, 31 (4): 1081–1101. https://doi.org/10.1007/s11676-020-01116-8 - P
uchałka , R., Dyderski , M.K., Vítková , M., Sádlo , J., Klisz , M., Netsvetov , M., … Jagodziński , A. M., 2021. Black locust ( Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Global Change Biology, 27 (8): 1587–1600. https://doi.org/10.1111/gcb.15486 - P
yšek , P., Chytrý , M., Pergl , J., Sádlo , J., Wild , J., 2012. Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia, 84: 575–629. - R C
ore Team , 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [cit. 2023-12-12]. https://www.R-project.prg - R
adtke , A., Ambrass , S., Zerbe , S., Tonon , G., Fontana , V., Ammer , C., 2013. Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. Forest Ecology and Management, 291: 308–317. https://doi.org/10.1016/j.foreco.2012.11.022 - S
ádlo , J., Vítková , M., Pergl , J., Pyšek , P., 2017. Towards site-specific management of invasive alien trees based on the assessment of their impacts: the case of Robinia pseudoacacia. NeoBiota, 35: 1–34. https://doi.org/10.3897/neobiota.35.11909 - S
amoilych , K.O., Mokritskaia , T.P., 2016. Change in the parameters the microstructure of loess soil during filtration. Journal of Geology, Geography and Geoecology, 24 (2): 106–113. https://doi.org/10.15421/111638 - Ś
rodek , D., Rahmonov , O., 2021. The properties of Black Locust Robinia pseudoacacia L. to selectively accumulate chemical elements from soils of ecologically transformed areas. Forests, 13 (1): 7. https://doi.org/10.3390/f13010007 - S
tat Soft Inc ., 2014. STATISTICA Data Analysis Software System, Version 12.0, 1984-2014. Palo Alto, CA, USA: TIBCO Software Inc. [cit. 2023-12-01] http://Statistica.io - T
erwei , A., Zerbe , S., Mölder , I., Annighöfer , P., Kawaletz , H., Ammer , C., 2016. Response of floodplain under-storey species to environmental gradients and tree invasion: a functional trait perspective. Biological Invasions, 18 (10): 2951–2973. https://doi.org/10.1007/s10530-016-1188-0 - T
utova , G.F., Kunakh , O.M., Yakovenko , V.M., Zhukov , O.V., 2023. The importance of relief for explaining the diversity of the floodplain and terrace soil cover in the Dnipro River valley: the case of the protected area within the Dnipro-Orylskiy Nature Reserve. Biosystems Diversity, 31 (2): 177–190. https://doi.org/10.15421/012319 - T
utova , G.F., Zhukov , O.V, Kunakh , O.M., Zhukova , Y.O., 2022. Response of earthworms to changes in the aggregate structure of floodplain soils. IOP Conference Series:Earth and Environmental Science, 1049 (1): 012062. https://doi.org/10.1088/1755-1315/1049/1/012062 van Groenendael , J.M., Klimes , L., Klimesova , J., 1996. Comparative ecology of clonal plants. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351 (1345): 1331–1339. https://doi.org/10.1098/rstb.1996.0116- V
ítková , M., Kolbek , J., 2010. Vegetation classification and synecology of Bohemian Robinia pseudacacia stands in a Central European context. Phytocoenologia, 40 (2–3): 205–241. https://doi.org/10.1127/0340-269X/2010/0040-0425 - V
ítková , M., Müllerová , J., Sádlo , J., Pergl , J., Pyšek , P., 2017. Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. Forest Ecology and Management, 384: 287–302. https://doi.org/10.1016/j.foreco.2016.10.057 - W
ang , Y., Liu , Y., Chen , D., Du , D., Müller -Schärer , H., Yu , F., 2024. Clonal functional traits favor the invasive success of alien plants into native communities. Ecological Applications. https://doi.org/10.1002/eap.2756 - Y
akovenko , V., Kunakh , O., Tutova , H., Zhukov , O., 2023. Diversity of soils in the Dnipro River valley (based on the example of the Dnipro-Orilsky Nature Reserve). Folia Oecologica, 50 (2): 119–133. https://doi.org/10.2478/foecol-2023-0011 - Y
akovenko , V., Zhukov , O., 2021. Zoogenic structure aggregation in steppe and forest soils. In Dmytruk, Y., Dent, D. (eds). Soils under stress. Cham: Springer International Publishing, p. 111–127. https://doi.org/10.1007/978-3-030-68394-8_12 - Z
hang , X.-Q., Liu , J., Welham , C.V.J., Liu , C.-C., Li , D.-N., Chen , L., Wang , R.-Q., 2006. The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia). Flora - Morphology, Distribution, Functional Ecology of Plants, 201 (7): 547–554. https://doi.org/10.1016/j.flora.2005.12.002 - Z
hukov , O., Kunakh , O., Yorkina , N., Tutova , A., 2023. Response of soil macrofauna to urban park reconstruction. Soil Ecology Letters, 5 (2): 220156. https://doi.org/10.1007/s42832-022-0156-0