Have a personal or library account? Click to login
A spontaneous spread of black locust (Robinia pseudoacacia L.): the importance of seed and vegetative reproduction Cover

A spontaneous spread of black locust (Robinia pseudoacacia L.): the importance of seed and vegetative reproduction

Open Access
|Jul 2024

References

  1. Ågren, G.I., Fagerström, T., Agren, G.I., Fagerstrom, T., 1984. Limiting dissimilarity in plants: Randomness prevents exclusion of species with similar competitive abilities. Oikos, 43 (3): 369. https://doi.org/10.2307/3544155
  2. Baddeley, A., Turner, R., Mateu, J., Bevan, A., 2013. Hybrids of Gibbs point process models and their implementation. Journal of Statistical Software, 55 (11): 1–43. https://doi.org/10.18637/jss.v055.i11
  3. Ben-Said, M., 2021. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecological Processes, 10 (1): 56. https://doi.org/10.1186/s13717-021-00314-4
  4. Call, L.J., Nilsen, E.T., 2003. Analysis of spatial patterns and spatial association between the invasive tree-of-heaven (Ailanthus altissima) and the native Black Locust (Robinia pseudoacacia). The American Midland Naturalist, 150 (1): 1–14. https://doi.org/10.1674/0003-0031(2003)150[0001:AOSPAS]2.0.CO;2
  5. Carl, C., Biber, P., Landgraf, D., Buras, A., Pretzsch, H., 2017. Allometric models to predict aboveground woody biomass of Black Locust (Robinia pseudoacacia L.) in short rotation coppice in previous mining and agri cultural areas in Germany. Forests, 8 (9): 328. https://doi.org/10.3390/f8090328
  6. Carl, C., Lehmann, J., Landgraf, D., Pretzsch, H., 2019. Robinia pseudoacacia L. in short rotation coppice: seed and stump shoot reproduction as well as UAS-based spreading analysis. Forests, 10 (3): 235. https://doi.org/10.3390/f10030235
  7. Chang, C.-S., Bongarten, B., Hamrick, J., 1998. Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. Journal of Plant Research, 111 (1): 17–24. https://doiorg/10.1007/BF02507146
  8. Crosti, R., Agrillo, E., Ciccarese, L., Guarino, R., Paris, P., Testi, A., 2016. Assessing escapes from short rotation plantations of the invasive tree species Robinia pseudoacacia L. in Mediterranean ecosystems: a study in central Italy. IForest - Biogeosciences and Forestry, 9 (5): 822–828. https://doi.org/10.3832/ifor1526-009
  9. De la Cruz, M., 2008. Metodos para analizar datos puntuales [Techniques for analysis of point data]. In Maestre, F.T., Escudero, A., Bonet, A. (eds). Introduccion al analisis espacial de datos en ecologia y ciencias ambientales: metodos y aplicaciones, Asociacion Espanola de Ecologia Terrestre. Madrid: Universidad Rey Juan Carlos y Caja de Ahorros del Mediterraneo, p. 76–127.
  10. Dixon, P.M., 2002. Nearest-neighbor contingency table analysis of spatial segregation for several species. Écoscience, 9 (2): 142–151. https://doi.org/10.1080/11956860.2002.11682700
  11. ESRI, 2011. ArcGIS desktop: release 10. Redlands, CA, USA: Environmental Systems Research Institute.
  12. Gongalsky, К.B., 2014. Lesnye pozhary i pochvennaya fauna [Wildfires and soil fauna]. Moskva: KMK. 169 p.
  13. Grese, R., 1991. The landscape architect and problem exotic plants. In Burley, J.B. (eds), Proceedings of the American Society of Landscape Architects’ Open Committee on Reclamation: Reclamation Diversity, San Diego, CA, USA, 29 October 1991. Washington, DC, USA: American Society of Landscape Architects, p. 7–15.
  14. Holoborodko, K.K., Sytnyk, S.A., Lovynska, V.M., Ivanko, I.A., Loza, I.M., Brygadyrenko, V.V., 2022. Impact of invasive species Parectopa robiniella (Gracillariidae) on fluorescence parameters of Robinia pseudoacacia in the conditions of the steppe zone of Ukraine. Regulatory Mechanisms in Biosystems, 13 (3): 324–330. https://doi.org/10.15421/022242
  15. Huntley, J.C., 1990. Robinia pseudacacia L. Black locust. In Burns, R.M., Honkala, B.H. (eds). Silvics of North America. Vol. 2. Hardwoods. Agriculture Handbook (United States. Department of Agriculture), no. 654. Washington, DC: United States Government Printing Office, p. 755–761.
  16. Ivajnsic, D., Cousins, S., Kaligarič, M., 2012. Colonization by Robinia pseudoacacia of various soils and habitat types outside woodlands in a traditional Central-Europen agricultural landscape. Polish Journal of Ecology, 60: 301–309.
  17. Jeník, J., 1994. Clonal growth in woody plants: a review. Folia Geobotanica et Phytotaxonomica, 29 (2): 291–306. https://doi.org/10.1007/BF02803802
  18. Jírová, A., Klaudisová, A., Prach, K., 2012. Spontaneous restoration of target vegetation in old-fields in a central European landscape: a repeated analysis after three decades. Applied Vegetation Science, 15 (2): 245–252. https://doi.org/10.1111/j.1654-109X.2011.01165.x
  19. Jung, S.-C., Matsushita, N., Wu, B.-Y., Kondo, N., Shiraishi, A., Hogetsu, T., 2009. Reproduction of a Robinia pseudoacacia population in a coastal Pinus thunbergii windbreak along the Kujukurihama Coast, Japan. Journal of Forest Research, 14 (2): 101–110. https://doi.org/10.1007/s10310-008-0109-1
  20. Kowarik, I., 1996. Funktionen klonalen Wachstums von Bäumen bei der Brachflächen-Sukzession unter besonderer Beachtung von Robinia pseudoacacia [Functions of clonal growth in trees during wasteland succession with special reference to Robinia pseudoacacia]. Verhandlungen der Gesellschaft für Okologie, 26: 173–181.
  21. Kowarik, I., 2010. Biologische Invasionen: Neophyten und Neozoen in Mitteleuropa [Biological invasions: new plant and animal species in Central Europe]. Stuttgart, Germany: Ulmer.
  22. Kowarik, I., Lippe, M., Cierjacks, A., 2013. Prevalence of alien versus native species of woody plants in Berlin differs between habitats and at different scales. Preslia, 85: 113–132.
  23. Krízsik, V., Körmöczi, L., 2000. Spatial spreading of Robinia pseudo-acacia and Populus alba clones in sandy habitats. Tiscia, 32: 3–8.
  24. Kunakh, O.M., Ivanko, I.A., Holoborodko, K.K., Volkova, A.M., Zhukov, O.V., 2023. Age estimation of black locust (Robinia pseudoacacia) based on morphometric traits. Biosystems Diversity, 31 (2): 222–228. https://doi.org/10.15421/012324
  25. Lovynska, V., Holoborodko, K., Ivanko, I., Sytnyk, S., Zhukov, O., Loza, I., Wiche, O., Heilmeier, H., 2023. Heavy metal accumulation by Acer platanoides and Robinia pseudoacacia in an industrial city (Northern Steppe of Ukraine). Biosystems Diversity, 31 (2): 246–253. https://doi.org/10.15421/012327
  26. Maringer, J., Wohlgemuth, T., Neff, C., Pezzatti, G.B., Conedera, M., 2012. Post-fire spread of alien plant species in a mixed broad-leaved forest of the Insubric region. Flora - Morphology, Distribution, Functional Ecology of Plants, 207 (1): 19–29. https://doi.org/10.1016/j.flora.2011.07.016
  27. Nadal-Sala, D., Hartig, F., Gracia, C.A., Sabaté, S., 2019. Global warming likely to enhance black locust (Robinia pseudoacacia L.) growth in a Mediterranean riparian forest. Forest Ecology and Management, 449: 117448. https://doi.org/10.1016/j.foreco.2019.117448
  28. Nicolescu, V.-N., Rédei, K., Mason, W.L., Vor, T., Pöetzelsberger, E., Bastien, J.-C., … Pástor, M., 2020. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. Journal of Forestry Research, 31 (4): 1081–1101. https://doi.org/10.1007/s11676-020-01116-8
  29. Puchałka, R., Dyderski, M.K., Vítková, M., Sádlo, J., Klisz, M., Netsvetov, M., … Jagodziński, A. M., 2021. Black locust ( Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Global Change Biology, 27 (8): 1587–1600. https://doi.org/10.1111/gcb.15486
  30. Pyšek, P., Chytrý, M., Pergl, J., Sádlo, J., Wild, J., 2012. Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia, 84: 575–629.
  31. R Core Team, 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [cit. 2023-12-12]. https://www.R-project.prg
  32. Radtke, A., Ambrass, S., Zerbe, S., Tonon, G., Fontana, V., Ammer, C., 2013. Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. Forest Ecology and Management, 291: 308–317. https://doi.org/10.1016/j.foreco.2012.11.022
  33. Sádlo, J., Vítková, M., Pergl, J., Pyšek, P., 2017. Towards site-specific management of invasive alien trees based on the assessment of their impacts: the case of Robinia pseudoacacia. NeoBiota, 35: 1–34. https://doi.org/10.3897/neobiota.35.11909
  34. Samoilych, K.O., Mokritskaia, T.P., 2016. Change in the parameters the microstructure of loess soil during filtration. Journal of Geology, Geography and Geoecology, 24 (2): 106–113. https://doi.org/10.15421/111638
  35. Środek, D., Rahmonov, O., 2021. The properties of Black Locust Robinia pseudoacacia L. to selectively accumulate chemical elements from soils of ecologically transformed areas. Forests, 13 (1): 7. https://doi.org/10.3390/f13010007
  36. StatSoft Inc., 2014. STATISTICA Data Analysis Software System, Version 12.0, 1984-2014. Palo Alto, CA, USA: TIBCO Software Inc. [cit. 2023-12-01] http://Statistica.io
  37. Terwei, A., Zerbe, S., Mölder, I., Annighöfer, P., Kawaletz, H., Ammer, C., 2016. Response of floodplain under-storey species to environmental gradients and tree invasion: a functional trait perspective. Biological Invasions, 18 (10): 2951–2973. https://doi.org/10.1007/s10530-016-1188-0
  38. Tutova, G.F., Kunakh, O.M., Yakovenko, V.M., Zhukov, O.V., 2023. The importance of relief for explaining the diversity of the floodplain and terrace soil cover in the Dnipro River valley: the case of the protected area within the Dnipro-Orylskiy Nature Reserve. Biosystems Diversity, 31 (2): 177–190. https://doi.org/10.15421/012319
  39. Tutova, G.F., Zhukov, O.V, Kunakh, O.M., Zhukova, Y.O., 2022. Response of earthworms to changes in the aggregate structure of floodplain soils. IOP Conference Series:Earth and Environmental Science, 1049 (1): 012062. https://doi.org/10.1088/1755-1315/1049/1/012062
  40. van Groenendael, J.M., Klimes, L., Klimesova, J., 1996. Comparative ecology of clonal plants. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351 (1345): 1331–1339. https://doi.org/10.1098/rstb.1996.0116
  41. Vítková, M., Kolbek, J., 2010. Vegetation classification and synecology of Bohemian Robinia pseudacacia stands in a Central European context. Phytocoenologia, 40 (2–3): 205–241. https://doi.org/10.1127/0340-269X/2010/0040-0425
  42. Vítková, M., Müllerová, J., Sádlo, J., Pergl, J., Pyšek, P., 2017. Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. Forest Ecology and Management, 384: 287–302. https://doi.org/10.1016/j.foreco.2016.10.057
  43. Wang, Y., Liu, Y., Chen, D., Du, D., Müller-Schärer, H., Yu, F., 2024. Clonal functional traits favor the invasive success of alien plants into native communities. Ecological Applications. https://doi.org/10.1002/eap.2756
  44. Yakovenko, V., Kunakh, O., Tutova, H., Zhukov, O., 2023. Diversity of soils in the Dnipro River valley (based on the example of the Dnipro-Orilsky Nature Reserve). Folia Oecologica, 50 (2): 119–133. https://doi.org/10.2478/foecol-2023-0011
  45. Yakovenko, V., Zhukov, O., 2021. Zoogenic structure aggregation in steppe and forest soils. In Dmytruk, Y., Dent, D. (eds). Soils under stress. Cham: Springer International Publishing, p. 111–127. https://doi.org/10.1007/978-3-030-68394-8_12
  46. Zhang, X.-Q., Liu, J., Welham, C.V.J., Liu, C.-C., Li, D.-N., Chen, L., Wang, R.-Q., 2006. The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia). Flora - Morphology, Distribution, Functional Ecology of Plants, 201 (7): 547–554. https://doi.org/10.1016/j.flora.2005.12.002
  47. Zhukov, O., Kunakh, O., Yorkina, N., Tutova, A., 2023. Response of soil macrofauna to urban park reconstruction. Soil Ecology Letters, 5 (2): 220156. https://doi.org/10.1007/s42832-022-0156-0
DOI: https://doi.org/10.2478/foecol-2024-0012 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 120 - 135
Submitted on: Dec 2, 2023
|
Accepted on: Mar 26, 2024
|
Published on: Jul 29, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Olga Kunakh, Irina Ivanko, Kyrylo Holoborodko, Olexander Zhukov, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.