Have a personal or library account? Click to login
A multiple criteria decision analysis approach for assessing the quality of hardwood species used by Greek timber industries Cover

A multiple criteria decision analysis approach for assessing the quality of hardwood species used by Greek timber industries

Open Access
|Jul 2024

References

  1. Aicher, S., Christian, Z., Dill-langer, G., 2014. Hard-wood Glulams—emerging timber products of superior mechanical properties. In Proceedings of the World Conference on Timber Engineering (WCTE 2014). Quebec, Canada, 10-14 August 2014. Quebec City, Canada: FPInnovations. 10 p. DOI: 10.13140/2.1.5170.1120
  2. Aicher, S., Ohnesorge, D., 2011. Shear strength of glued laminated timber made from European beech timber. European Journal of Wood and Wood Products, 69: 143–154. https://doi.org/10.1007/s00107-009-0399-9
  3. Behzadian, M., Kazemzadeh, R.B., Albadvi, A., Aghdasi, M., 2010. PROMETHEE: a comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200 (1): 198–215. https://doi.org/10.1016/j.ejor.2009.01.021
  4. Brans, J.P., 1982. L’ingénierie de la décision; elaboration d’instruments d’aide à la décision. La méthode PROMETHEE [Decision engineering; development of decision support tools. The PROMETHEE method]. In Nadeau, R., Landry, M. (eds). L’aide à la décision: nature, instruments et perspectives d’avenir. Québec: Presses de l’Université Laval, p. 183–213.
  5. Brans, J.P., De Smet, Y., 2016. PROMETHEE methods. In Greco, S., Ehrgott, M., Figueira, J. (eds). Multiple criteria decision analysis. International Series in Operations Research & Management Science, vol. 233. New York, NY: Springer, p. 187–220.
  6. Brunetti, M., Macchioni, N., Grifoni, F., Lazzeri, S., Sozzi, L., Cutini, A., 2021. Anatomical, physical and mechanical characterization of sessile oak (Quercus petraea Liebl.) wood from central Italy aged coppices. Annals of Silvicultural Research, 46 (1): 1–7. http://dx.doi.org/10.12899/asr-1672
  7. Brunetti, M., Nocetti, M., Pizzo, B., Aminti, G., Cremonini, C., Negro, F., Zanuttini, R., Romagnoli, M., Scarascia Mugnozza, G., 2020. Structural products made of beech wood: quality assessment of the raw material. European Journal of Wood and Wood Products, 78: 961–970. https://doi.org/10.1007/s00107-020-01542-9
  8. Conedera, M., Manetti, M. C., Giudici, F., Amorini, E., 2004. Distribution and economic potential of the Sweet chestnut (Castanea sativa Mill.) in Europe. Ecologia Mediterranea, 30 (2): 179–193.
  9. Desch, H.E., Dinwoodie, J.M., 1996. Timber: structure, properties, conversion and use. 7th edition. London, UK: Red Globe Press. 320 p.
  10. Ernur, A.M., Akiner, İ., Akiner, N., Zileska, P.V., 2022. Using wood as a new generation building material in the context of sustainable development. Zaštita Materi- jala, 63 (1): 68–78. https://doi.org/10.5937/zasmat2201068A
  11. European Parliament, 2015. A new EU forest strategy: for forests and the forest-based sector. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Publications Office of the European Union, Luxembourg. Brussels: European Commission, p. 1–17. [cit. 2023-12-15]. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:52013DC0659
  12. Filippou, I., 2014. Chemistry and chemical technology of wood. Thessaloniki, Greece: Giachoudi Press. 357 p. (In Greek).
  13. Forest Europe, 2018. Enhancing the long-term competitiveness of the forest sector in a green economy: policies for forest-based bioeconomy in Europe. Workshop report. Brussels, 29 May 2018. Zvolen: Liaison Unit Bratislava. 12 p. [cit. 2023-12-15]. https://foresteurope.org/wp-content/uploads/2017/08/Workshop-report_final-1.pdf
  14. Forest Products Laboratory (USDA), 2010. Wood handbook: wood as an engineering material. Madison, Wisconsin: US Department of Agriculture, Forest Service, Forest Products Laboratory. 508 p.
  15. Forest Products Pricing Table, 2023. Forest products pricing table, management year 2023. Greek Government Gazzette, 17 October 2023, 6013 (2): 67419–67426. [cit. 2023-11-30]. https://www.geotee.gr/Main-NewsDetail.aspx?CatID=1&RefID=27004&TabID=4. (In Greek).
  16. Gao, J., Jebrane, M., Terziev, N., Daniel, G., 2021. Evaluation of wood quality traits in Salix viminalis useful for biofuels: characterization and method development. Forests, 12 (8): 1048. DOI: 10.3390/f12081048
  17. Gartner, B.L., 2005. Assessing wood characteristics and wood quality in intensively managed plantations. Journal of Forestry, 103 (2): 75.
  18. Gejdoš, M., Lieskovský, M., Giertliová, B., Němec, M., Danihelová, Z., 2019. Prices of raw-wood assortments in selected markets of central Europe and their development in the future. BioResources, 14 (2): 2995–3011. DOI: 10.15376/biores.14.2.2995-3011
  19. Georgiadis, N.M., Cooper, R.J., 2007. Development of a forest certification standard compatible with PEFC and FSC’s management requirements. A case study from Greece. Forestry: An International Journal of Forest Research, 80 (2): 113–135. https://doi.org/10.1093/forestry/cpm004
  20. Grigoriou, Α., 1992. Chemistry and chemical technology of wood. Teaching material. Thessaloniki, Greece: Publications Office of Aristotle University of Thessaloniki. 32 p. (In Greek).
  21. Jozsa, L.A., Middleton, G.R., 1994. A discussion of wood quality attributes and their practical implications. Vancouver, Canada: Forintek Canada Corp. 51 p.
  22. Kakaras, I., 2008. Wood as raw material. Types of wood-properties-applications. Karditsa, Greece: University of Thessaly. 186 p. (In Greek).
  23. Kakavas, K., Chavenetidou, M., Birbilis, D., 2018a. Effect of ring shakes on mechanical properties of chestnut wood from a Greek coppice forest. The Forestry Chronicle, 94 (1): 61–67. https://doi.org/10.5558/tfc2018-008
  24. Kakavas, K., Chavenetidou, M., Birbilis, D., 2018b. Chemical properties of Greek stump chestnut (Castanea sativa Mill.). Natural Products Chemistry & Research, 6 (4): 1–4. DOI: 10.4172/2329-6836.1000331
  25. Kakavas, K., Chavenetidou, M., Birbilis, D., 2022. Dimensional changes of sweet chestnut wood (Castanea sativa Mill.) of Greek origin. Euro-Mediterranean Journal for Environmental Integration, 7 (3): 377–379. https://doi.org/10.1007/s41207-022-00320-8
  26. Kantay, R., AS, N., Ünsal, Ö., 2000. The mechanical properties of walnut (Juglans regia L.) wood. Turkish Journal of Agriculture and Forestry, 24 (6): 751–756.
  27. Kauter, D., Lewandowski, I., Claupein, W., 2003. Quantity and quality of harvestable biomass from Populus short rotation coppice for solid fuel use—a review of the physiological basis and management influences. Bio-mass and Bioenergy, 24 (6): 411–427. https://doi.org/10.1016/S0961-9534(02)00177-0
  28. Koulelis, P.P., Solomou, A.D., Fassouli, V.P., Tsiaras, S., Petrakis, P.V., 2022. Greece on a sustainable future: reviewing constraints and practices regarding forest and water resources management, flora and fauna bio-diversity. International Journal of Agricultural Resources, Governance and Ecology, 18 (1-2): 38–54. https://doi.org/10.1504/IJARGE.2022.124637
  29. Koulelis, P.P., 2009. Cluster analysis in primary roundwood production of 25 countries of European Union. Annals of Forest Research, 52: 163–168. https://doi.org/10.15287/afr.2009.133
  30. Koulelis, P.P., 2011. Greek timber industries and wood product markets over the last century: development constraints and future directions. Annals of Forest Research, 54 (2): 229–240. https://doi.org/10.15287/afr.2011.92
  31. Koulelis, P.P., 2012. A study of the Greek trade deficit in forest products. Current conditions and prospects. Forest Systems, 21: 549–554. http://dx.doi.org/10.5424/fs/2012213-02776
  32. Koulelis, P.P., 2016. Forest products consumption and trade deficit in Greece during the financial crisis: A quantitative statistical analysis. Open Journal of Business and Management, 4: 258–265. DOI: 10.4236/ojbm.2016. 42027
  33. Koulelis, P.P., Tsiaras, S., Andreopoulou, Z.S., 2023. Greece’s forest sector from the perspective of timber production: evolution or decline? Forests, 14: 2331. https://doi.org/10.3390/f14122331
  34. Kretschmann, D.E., 2010. Mechanical properties of wood. Chapter 5. In Ross, R.J. (ed.). Wood handbook. Wood as an engineering material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, p. 100–145 (5-1–5-46).
  35. Larjavaara, M., Muller-Landau, H.C., 2010. Rethinking the value of high wood density. Functional Ecology, 24: 701–705. DOI: 10.1111/j.1365-2435.2010.01698.x
  36. Li, Y., Mei, B., Linhares-Juvenal, T., 2019. The economic contribution of the world’s forest sector. Forest Policy and Economics, 100: 236–253. https://doi.org/10.1016/j.forpol.2019.01.004
  37. Manetti, M.C., Amorini, E., Becagli, C., Conedera, M., Giudici, F., 2001. Productive potential of chestnut (Castanea sativa Mill.) stands in Europe. Forest Snow and Landscape Research, 76 (3): 471–476.
  38. Mantanis, G., 2008. Applications of wood species in Greek market. Teaching material. Thessaly, Greece: University of Thessaly. 4 p. [cit. 2023-11-14]. http://mantanis.users.uth.gr/2008-19.pdf (In Greek).
  39. Mareschal, B., 2013. Visual PROMETHEE 1.4 manual. VP Solutions. 192 p.
  40. Meier, E.W., 2015. Wood! Identifying and using hundreds of woods worldwide. Wisconsin, USA: The Wood Database. 272 p.
  41. Niemz, P., Teischinger, A., Sandberg, D., 2023. Springer handbook of wood science and technology. Heidelberg, Germany: Springer. 2069 p.
  42. Perlin, J., 2005. A forest journey: the story of wood and civilization. Vermont, USA: The Countryman Press. 464 p.
  43. Rohanová, A., Nunez, E., 2014. Prediction models of Slovakian structural timber. Wood Research, 5: 757–767.
  44. Savidge, R.A., 2003. Tree growth and wood quality. In Bar nett, J.R., Jeronimidis, G. (eds). Wood quality and its biological basis. New Jersey, USA: Blackwell, p. 1–29.
  45. Scheffer, T.C., Morrell, J.J., 1998. Natural durability of wood: a worldwide checklist of species. Oregon State University, USA: Forest Research Laboratory. 58 p.
  46. Sennerby-Forsse, L., 1989. Wood structure and quality in natural stands of Salix caprea L. and Salix pentandra L. Studia Forestalia Suecica, 182: 1–17.
  47. Skarvelis, M., Mantanis, G.I., 2013. Physical and mechanical properties of beech wood harvested in the Greek public forests. Wood Research, 58 (1): 123–130.
  48. Šuhajdová, E., Novotný, M., Pěnčík, J., Šuhajda, K., Schmid, P., Straka, B., 2018. Evaluation of suitability of selected hardwood in civil engineering. Building Materials and Structure, 61 (2): 73–82. DOI: 10.5937/GRMK1802073S
  49. Taherdoost, H., Madanchian, M., 2023. Using PROMETHEE method for multi- criteria decision making: applications and procedures. Iris Journal of Economics & Business Management, 1 (1): 1–7. DOI: 10.33552/IJEBM.2023.01.000502
  50. Toivonen, R.M., 2012. Product quality and value from consumer perspective—An application to wooden products. Journal of Forest Economics, 18 (2): 157–173. https://doi.org/10.1016/j.jfe.2011.12.004
  51. Trulli, N., Valdés, M., De Nicolo, B., Fragiacomo, M., 2017. Grading of low-quality wood for use in structural elements. In Concu, G. (ed.) Wood in civil engineering. IntechOpen, p. 3–24). DOI: 10.5772/67129
  52. Tsiaras, S., Andreopoulou, Z., 2020. Forest policy evaluation in European countries using the PROMETHEE method. In Advances in operational research in the Balkans: XIII Balkan Conference on Operational Research. Cham: Springer International Publishing, p. 95–109.
  53. Tsiaras, S., Koulelis, P., Tsiroukis, A., Spanos, I., 2021. The contribution of forests in regional development: the role of National Forest Strategy in Greece. MIBES Transactions, 14: 110–122.
  54. Tsiaras, S., Papathanasiou, J., 2018. Decision making under the scope of forest policy: sustainable agroforestry systems in less favoured areas. International Journal of Sustainable Agricultural Management and Informatics, 4 (3-4): 205–218. https://doi.org/10.1504/IJSAMI.2018.099232
  55. Tsiaras, S., Samara, T., 2019. Selection of the most suitable tree species in urban areas based on their capability of capturing heavy metals: A forest policy approach. International Journal of Sustainable Agricultural Management and Informatics, 5 (1): 15–24. https://doi.org/10.1504/IJSAMI.2019.101374
  56. Tsoumis, G., 1991. Science and technology of wood: structure, properties, utilization. New York, USA: Van Nostrand Reinhold. 351 p.
  57. Vassiliou, V., Aidinidis, E., 2004. Walnut’s wood and the technology of its utilization. Thessaloniki, Greece: Xristodoulidis. 185 p. (In Greek).
  58. Vlachokostas, C., Michailidou, A. V., Matziris, E., Achillas, C., Moussiopoulos, N., 2014. A multiple criteria decision-making approach to put forward tree species in urban environment. Urban Climate, 10: 105–118. https://doi.org/10.1016/j.uclim.2014.10.003
  59. Voulgaridis, E.V., 1995. Research on forest biomass utilization in Greece. Forêt Méditerranéenne, 16 (1): 99–101.
  60. Voulgaridis, E.V.,Vassiliou, V.G., 2005. Wood properties and utilization potentials of walnut wood (Juglans regia L.) grown in Greece. ISHS Acta Horticulturae 705: V International Walnut Symposium, article number 705_78: 535–542. https://doi.org/10.17660/ActaHortic.2005.705.78
  61. Voulgaridis, H., 2015. Quality and uses of wood. Kallipos repository. 280 p. [cit. 2024-08-03]. https://repository.kallipos.gr/handle/11419/5260. (In Greek).
  62. Zhu, H., Luo, W., Ciesielski, P.N., Fang, Z., Zhu, J.Y., Henriksson, G., Himmel, M., Hu, L., 2016. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 116 (16): 9305–9374. https://doi.org/10.1021/acs.chemrev.6b00225
DOI: https://doi.org/10.2478/foecol-2024-0011 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 109 - 119
Submitted on: Mar 22, 2024
|
Accepted on: May 22, 2024
|
Published on: Jul 29, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Stefanos Tsiaras, Marina Chavenetidou, Panagiotis P. Koulelis, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.