Have a personal or library account? Click to login
Litterfall, litter decomposition, and carbon storage of Pinus densiflora and Quercus variabilis stands in South Korea Cover

Litterfall, litter decomposition, and carbon storage of Pinus densiflora and Quercus variabilis stands in South Korea

By: Gyeongwon Baek and  Choonsig Kim  
Open Access
|Jan 2024

References

  1. An, J.Y., Park, B.B., Chun, J.H., Osawa, A., 2017. Litter-fall production and fine root dynamics in cool-temperate forests. PLoS One, 12: e0180126. https://doi:10.1371/journal.pone.0180126.
  2. Badalamenti, E., Battipaglia, G., Gristina, L., Novara, A., Rühl, J., Sala, G., Sapienza, L., Valentini, R., Mantia, T.L., 2019. Carbon stock increases up to old growth forest along a secondary succession in Mediterranean island ecosystems. PLoS ONE, 14: e0220194. https://doi.org/10.1371/journal.pone.0220194.
  3. Baek, G., Kim, C., 2020. Soil CO2 efflux dynamics in response to fertilization in Pinus densiflora and Quercus variabilis stands. Journal of Korean Society of Forest Science, 109: 271–280. https://doi.org/10.14578/jkfs.2020.109.3.271. (In Korean with English abstract).
  4. Berg, B., Laskowski, R., 2006. Litter decomposition: aguide to carbon and nutrient turnover. Advances in Ecological Research, 38: 20–71 p.
  5. Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., Russell, M.B., Smith, J.E., 2016. Estimating litter carbon stocks on forest land in the United States. Science of the Total Environment, 557-558: 469–478. https://doi.org/10.1016/j.scitotenv.2016.03.090.
  6. Egusa, T., Kumagai, T., Shiraishi, N., 2020. Carbon stock in Japanese forests has been greatly underestimated. Scientific Reports, 10: 7895. https://doi.org/10.1038/s41598-020-64851-2.
  7. Gao, Y., Cheng, J., Ma, Z., Zhao, Y., Su, J., 2014. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of Northwest China. Annals of Forest Science, 71: 427–435. https://doi.org/10.1007/s13595-013-0355-z.
  8. Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K., Byrne, K.A., 2007. How strongly can forest management influence soil carbon sequestration? Geoderma, 137: 253–268. https://doi.org/10.1016/j.geoderma.2006.09.003.
  9. Kim, C., 2019. Carbon and nitrogen distribution of tree components in Larix kaempferi Carriere and Quercus variabilis Blume stands in Gyeongnam Province. Journal of Korean Society of Forest Science, 108: 139–146. https://doi.org/10.14578/jkfs.2019.108.2.139.
  10. Kim, C., Baek, G., Choi, B., HA, J., Bae, E.J., Lee, K.S., Son, Y.M., 2020. Carbon stocks of tree, forest floor, and mineral soil in Cryptomeria japonica and Chamaecyparis obtusa stands. Journal of Korean Society of Forest Science, 109: 169–178. https://doi.org/10.14578/jkfs.2020.109.2.169. (In Korean with English abstract).
  11. Kim, C., Jeong, J., Kim, R.H., Son, Y.M., Lee, K.H., kim, J.S., Park, I.H., 2011. Allometric equations and bio-mass expansion factors of Japanese red pine on the local level. Landscape and Ecological Engineering, 7: 283–289. https://doi.org/10.1007/s11355-010-0131-2.
  12. Kim, C., Yoo, B.O., Jung, S.Y., Lee, K.S., 2017. Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in Southern Korea. iForest – Biogeosciences and Forestry, 10: 483–490. https://doi.org/10.3832/ifor2164-010.
  13. Kim, M., Kraxner, F., Son, Y., Jeon, S.W., Shvidenko, A., Schepaschenko, D., Ham, B.Y., Lim, C.H., Song, C., Hong, M., Lee, W.K., 2019. Quantifying impacts of national-scale afforestation on carbon budgets in South Korea from 1961 to 2014. Forests, 10: 579. https://doi.org/10.3390/f10070579.
  14. Korea Meterological Administration, 2019. Climatological normal of Korea. Korea Meteorological Administration, Seoul. [online]. [cit. 2021-11-20]. https://kma.go.kr/down/Climatological_2010.pdf.
  15. Krishna, M.P., Mohan, M., 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment, 2: 236–249. https://doi.org/10.1007/s40974-017-0064-9.
  16. Lavadinović, V., Miletić, Z., Lavadinović, V., 2015. Variability of nitrogen and carbon contents in the needles of Canadian Douglas-fir provenances on two soil types in Serbia. Baltic Forestry, 21: 272–278. ISSN 2029-9230.
  17. Lee, S., Lee, S., Shin, J., Yim, J., Kang, J., 2020. Assessing the carbon storage of soil and litter from national forest inventory data in South Korea. Forests, 11: 1318. https://doi.org/10.3390/f11121318.
  18. Lee, S.J., Yim, J.S., Son, Y.M., Son, Y., Kim, R., 2018. Estimation of forest carbon stocks for national greenhouse gas inventory reporting in South Korea. Forests, 9: 625. https://doi.org/10.3390/f9100625.
  19. Liu, C.J., Westman, C.J., Ilvesniemi, H., 2001. Matter and nutrient dynamics of pine (Pinus tabulaeformis) and oak (Quercus variabilis) litter in North China. Silva Fennica, 35: 3–13. https://doi.org/10.14214/sf.599.
  20. Lukina, N., Kuznetsova, A., Tikhonova, E., Smirnov, V., Danilova, M., Gornov, A., Bakhmet, O., Kryshen, A., Tebenkova, D., Shashkov, M., Knyazeva, S., 2020. Linking forest vegetation and soil carbon stock in Northwestern Russia. Forests, 11: 979. https://doi.org/10.3390/f11090979.
  21. Noh, N.J., Kim, C., Bae, S.W., Lee, W.K., Yoon, T.K., Muraoka, H., Son, Y., 2013. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities. Journal of Plant Ecology, 6: 368–379. https://doi.org/10.1093/jpe/rtt007.
  22. Olson, J.S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44: 322–331. https://doi.org/10.2307/1932179.
  23. Park, B.B., Rahman, A., Han, S.H., Youn, W.B., Hyun, H.J., Hernandez, J., An, J.Y., 2020. Carbon and nutrient inputs by litterfall in evergreen and deciduous forests in Korea. Forests, 11: 143. https://doi.org/10.3390/f11020143.
  24. Park, S.W., Baek, G., Kim, S., Yang, A.R., Kim, C., 2019. Carbon and nitrogen responses of litterfall components by NPK and PK fertilizers in a red pine (Pinus densiflora S. et Z.) stand. Journal of Korean Society of Forest Science, 108: 21–28. https://doi.org/10.14578/jkfs.2019.108.1.21.
  25. Pragasan, L.A., 2022. Tree carbon stock and its relationship to key factors from a tropical hill forest of Tamil Nadu, India. Geology, Ecology, and Landscapes, 6: 32–39. https://doi.org/10.1080/24749508.2020.1742510.
  26. Pugh, T.A.M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., Calle, L., 2019. Role of forest regrowth in global carbon sink dynamics. PNAS, 116: 4382–4387. https://doi.org/10.1073/pnas.1810512116.
  27. Sas Institute Inc., 2003. SAS/STAT Statistical Software. Version 9.1. Cary, NC. USA: SAS publishing.
  28. Wang, S., Zhuang, Q., Yang, Z., Yu, N., Jin, X., 2019. Temporal and spatial changes of soil organic carbon stocks in the forest area of Northeastern China. Forests, 10: 1023. https://doi.org/10.3390/f10111023.
  29. Wei, Y., Li, M., Chen, H., Lewis, B.J., Yu, D., Zhou, L., Zhou, W., Fang, X., Zhao, W., Dai, L., 2013. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in Northeastern China. PLoS ONE, 8: e72201. https://doi.org/10.1371/journal.pone.0072201.
  30. Won, H.Y., Namgung, J., Pyo, J.H., Mun, H.T., 2011. Litter production and nutrient input via litterfall in Quercus variabilis forest at Mt. Worak National Park. Korean Journal of Environment and Ecology, 25: 573–580. (In Korean with English abstract).
  31. Yang, B., Zhang, W., Lu, Y., Zhang, W., Wang, Y., 2019. Carbon storage dynamics of secondary forest succession in the Central Loess Plateau of China. Forests, 10: 342. https://doi.org/10.3390/f10040342.
DOI: https://doi.org/10.2478/foecol-2024-0004 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 39 - 46
Submitted on: Oct 16, 2023
Accepted on: Nov 25, 2023
Published on: Jan 26, 2024
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Gyeongwon Baek, Choonsig Kim, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.