Have a personal or library account? Click to login
Foliar iron and zinc nano-fertilizers enhance growth, mineral uptake, and antioxidant defense in date palm (Phoenix dactylifera L.) seedlings Cover

Foliar iron and zinc nano-fertilizers enhance growth, mineral uptake, and antioxidant defense in date palm (Phoenix dactylifera L.) seedlings

Open Access
|Jul 2023

References

  1. Ahmad, I., Akhtar, M.S., 2019. Use of nanoparticles in alleviating salt stress. In Akhtar, M.S. (ed.). Salt stress, microbes, and plant interactions: causes and solution. Vol. 1. Singapore: Springer Nature Singapore. 297 p. https://doi.org/10.1007/978-981-13-8801-9
  2. Ait-El-Mokhtar, M., Laouane, R. Ben, Anli, M., Boutasknit, A., Wahbi, S., Meddich, A., 2019. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scientia Horticulturae, 253: 429–438. https://doi.org/10.1016/j.scienta.2019.04.066
  3. Al-Abdoulhadi, A., Dinar, H.A, Ebert, G., Büttner, C., Al-Abdoulhadi, I.A., Dinar, H.A, Ebert, G., Büttner, C., 2012a. Influence of salinity levels on nutrient content in leaf, stem, and root of major date palm (Phoenix dactylifera L.) cultivars. International Research Journal of Agricultural Science and Soil Science, 2: 341–346.
  4. Al-Abdoulhadi, I.A., Dinar, H.A., Ebert, G., Büttner, C., 2012b. Influence of salinity stress on photosynthesis and chlorophyll content in date palm (Phoenix dactylifera L.) cultivars. African Journal of Agricultural Research, 7: 3314–3319. https://doi.org/10.5897/AJAR12.433
  5. Aldhebiani, A.Y., Metwali, E., Soliman, H., Howladar, S.M., 2018. Response of different date palm cultivars to salinity and osmotic stresses using tissue culture technique. International Journal of Agriculture and Biology, 20:1581–1590. https://doi.org/10.17957/IJAB/15.0674
  6. Al-Juthery, H.W.A., Hassan, A.H., Kareem, F.K., Musa, R.F., Khaeim, H.M., 2019. The response of wheat to foliar application of nano-micro nutrients. Plant Archives, 19: 827–831.
  7. Al Kharusi, L., Assaha, D.V.M., Al-Yahyai, R., Yaish, M.W., 2017. Screening of date palm (Phoenix dactylifera L.) cultivars for salinity tolerance. Forests, 8: 136. https://doi.org/10.3390/f8040136
  8. Altemimy, H.M.A., Altemimy, I.H.H., Abed, A.M., 2019. Evaluation the efficacy of nano-fertilization and Disper osmotic in treating salinity of irrigation water in quality and productivity properties of date palm Phoenix dactylifera L. IOP Conference Series: Earth and Environmental Science, 388: 012072. https://doi.org/10.1088/1755-1315/388/1/012072
  9. Amiri, H., Mousavi, M., Torahi, A., 2016. Improving date palm (Phoenix dactylifera L.) cv. estamaran calogenesis by the use of zinc oxide nanoparticles. Journal of Experimental Biology and Agricultural Sciences, 4: 557–563. https://doi.org/10.18006/2016.4(5).557.563
  10. AOAC, 2005. Official methods of analysis. Association of Official Analytical Chemists, Virginia, US Chemists. 112 p.
  11. Aseeri, I.A., Omar, A.K., Shareef, H.J., Aly, K.M., 2021. Clean agriculture for the safe production of date. Applied Ecology and Environmental Research, 19: 3551–3561. https://doi.org/http://dx.doi.org/10.15666/aeer/1905_35513561
  12. Awad, M.A., Soaud, A.A., El-Konaissi, S.M., 2006. Effect of exogenous application of anti-stress substances and elemental sulphur on growth and stress tolerance of tissue culture derived plantlets of date palm (Phoenix dactylifera L.) cv. ‘Khalas’ during acclimatization. Journal of Applied Horticulture, 8: 129–134.
  13. Bates, L.S., Waldren, R.P. Teare, I.D., 1973. Determination of free proline for water stress studies. Plant and Soil, 39: 205–207. https://doi.org/10.1007/BF00018060
  14. Bradford, M.M., Dong, Y.Y., Xu, L., Liu, S., Bai, X., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  15. Chen, J., Dou, R., Yang, Z., You, T., Gao, X., Wang, L., 2018. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 130: 604–612. https://doi.org/10.1016/j.plaphy.2018.08.019
  16. Ciarmiello, L., Woodrow, P., Fuggi, A., 2011. Plant genes for abiotic stress. Abiotic stress in plants. IntechOpen. 428 p. https://doi.org/10.5772/22465
  17. Da Costa, M.V.J., Sharma, P.K., 2016. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54: 110–119. https://doi.org/10.1007/s11099-015-0167-5
  18. Dadashzadeh, S., Sharifi, R.S., Salim Farzaneh, A., 2018. Physiological and biochemical responses of barley to application of bio-fertilizers and nano iron oxide under salinity stress in greenhouse. Bangladesh Journal of Botany, 47: 863–875.
  19. Dhawi, F., Al-Khayri, J.M., 2009. Magnetic fields induce changes in photosynthetic pigments content in date palm (Phoenix dactylifera L.) seedlings. The Open Agriculture Journal, 3: 1–5. https://doi.org/10.2174/1874331500903010001
  20. Drissi, S., Houssa, A.A., Bamouh, A., 2016. Zinc migration in the sandy soil and its impact on the bioavailability of some nutrient in the root environment. Sains Tanah – Journal of Soil Science and Agroclimatology, 13: 9–17.
  21. El Rabey, H.A., Al-Malki, A.L., Abulnaja, K.O., Rohde, W., 2015. Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in date palm (Phoenix dactylifera L.). International Journal of Genomics, 1: article ID 407165, 11 p. https://doi.org/10.1155/2015/407165
  22. Elsakhawy, T., Omara, A. E.-D., Alshaal, T., El-Ramady, H., Ghazi, A., El-Nahrawy, S., Elhawat, N., 2018. Nanomaterials and plant abiotic stress in agroecosystems. Environment, Biodiversity and Soil Security, 2: 50–55. https://doi.org/10.21608/jenvbs.2018.3897.1030
  23. Fathi, A., Zahedi, M., Torabian, S., Khoshgoftar, A., 2017. Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. Journal of Plant Nutrition, 40: 1376–1385. https://doi.org/10.1080/01904167.2016.1262418
  24. Haider, M.S., Khan, I.A., Jaskani, M.J., Naqvi, S.A., 2015. Assessment of morphological attributes of date palm accessions of diverse agro-ecological origin. Pakistan Journal of Botany, 47: 1143–1151.
  25. Hasanuzzaman, M., Hossain, M.A., Da Silva, J.A.T., Fujita, M., 2012. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M. (eds). Crop stress and its management: perspectives and strategies. Dordrecht: Springer Science +Business Media B.V., p. 261–314 2012. https://doi.org/10.1007/978-94-007-2220-0
  26. Hasanuzzaman, M., Raihan, M.R.H., Masud, A.A.C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., Fujita, M., 2021. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22: 9326. https://doi.org/10.3390/ijms22179326
  27. Havir, E.A., Mchale, N.A., 1987. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84: 450–455. https://doi.org/10.1104/pp.84.2.450
  28. Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125: 189–198.
  29. Hilo, A., Shahinnia, F., Druege, U., Franken, P., Melzer, M., Rutten, T., Von Wirén, N., Hajirezaei, M.R., 2017. A specific role of iron in promoting meristematic cell division during adventitious root formation. Journal of Experimental Botany, 68: 4233–4247. https://doi.org/10.1093/jxb/erx248
  30. Hussein, M.M., Abou-Baker, N.H., 2018.The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society Open Science, 5: 171809. https://doi.org/10.1098/rsos.171809
  31. Jana, G.A., Al Kharusi, L., Sunkar, R., Al-Yahyai, R., Yaish, M.W., 2019. Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments. Plant Signaling and Behavior, 14 (11): e1663112. https://doi.org/10.1080/15592324.2019.1663112
  32. Juárez-Maldonado, A., Ortega-Ortíz, H., Morales-Díaz, A.B., González-Morales, S., Morelos-Moreno, Á., Cabrera-De La Fuente, M., Sandoval-Rangel, A., Cadenas-Pliego, G., Benavides-Mendoza, A., 2019. Nanoparticles and nanomaterials as plant biostimulants. International Journal of Molecular Sciences, 20: 162, 19 p. https://doi.org/10.3390/ijms20010162
  33. Jubeir, S.M., Ahmed, W.A., 2019. Effect of nanofertilizers and application methods on vegetative growth and yield of date palm. Iraqi Journal of Agricultural Sciences, 50: 267–274.
  34. Kanwal, U., Ali, S., Shakoor, M.B., Farid, M., Hussain, S., Yasmeen, T., Adrees, M., Bharwana, S.A., Abbas, F., 2014. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica napus L. under lead stress. Environmental Science and Pollution Research, 21: 9899–9910. https://doi.org/10.1007/s11356-014-3001-x
  35. Kaushik, S., Djiwanti, S.R., 2019. Nanofertilizers: smart delivery of plant nutrients. In Panpatte, D.G., Jhala, Y.K. (eds). Nanofertilizers: smart delivery of plant nutirents. Singapore: Springer Nature Singapore, p. 59–72.
  36. Kurup, S.S., Hedar, Y.S., Al Dhaheri, M.A., El-Heawiety, A.Y., Aly, M.A.M., Alhadrami, G., 2009. Morpho-physiological evaluation and RAPD markers-assisted characterization of date palm (Phoenix dactylifera L.) varieties for salinity tolerance. Journal of Food, Agriculture and Environment, 7: 503–507.
  37. Lachowiec, J., Queitsch, C., Kliebenstein, D.J., 2016. Molecular mechanisms governing differential robustness of development and environmental responses in plants. Annals of Botany, 117: 795–809. https://doi.org/10.1093/aob/mcv151
  38. Lutts, S., Kinet, J.M., Bouharmont, J., 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46: 1843–1852. https://doi.org/10.1093/jxb/46.12.1843
  39. Mahil, I.E., Kumar, A., 2019. Foliar application of nano-fertilizers in agricultural crops – A review. Journal of Farm Sciences,32: 239–249.
  40. Mbarki, S., Skalicky, M., Vachova, P., Hajihashemi, S., Jouini, L., Zivcak, M., Tlustos, P., Brestic, M., Hejnak, V., Khelil, A.Z., 2020. Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants, 9: 526. https://doi.org/10.3390/plants9040526
  41. Moran, J. F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R. V., Aparicio-Tejo, P., 1994. Drought induces oxidative stress in pea plants. Planta, 194: 346–352. https://doi.org/10.1007/BF00197534
  42. Morsy, N.M., Shams, A.S., Abdel-Salam, M.A. 2017. Zinc foliar spray on snap beans using nano-Zn with N-soil application using mineral, organic and biofertilizer. Middle East Journal of Agriculture Research, 6: 1301–1312.
  43. Nakano, Y., Asada, K., 1980. Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant and Cell Physiology, 21: 1295–1307. https://doi.org/10.1093/oxfordjournals.pcp.a076128
  44. Naser, H.M., Hanan, E.H., Elsheery, N.I., Kalaji, H.M., 2016. Effect of biofertilizers and putrescine amine on the physiological features and productivity of date palm (Phoenix dactylifera L.) grown on reclaimed-salinized soil. Trees – Structure and Function, 30: 1149–1161. https://doi.org/10.1007/s00468-016-1353-1
  45. Navarro, E., Baun, A., Behra, R., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17: 372–386. https://doi.org/10.1007/s10646-008-0214-0
  46. Nongbet, A., Mishra, A.K., Mohanta, Y.K., Mahanta, S., Ray, M.K., Khan, M., Baek, K.H., Chakrabartty, I., 2022. Nanofertilizers: a smart and sustainable attribute to modern agriculture. Plants, 11: 2587, 20 p. https://doi.org/10.3390/plants11192587
  47. Parvin, S., Lee, O.R., Sathiyaraj, G., Khorolragchaa, A., Kim, Y. J., Yang, D.C., 2014. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 537: 70–78. https://doi.org/10.1016/j.gene.2013.12.021
  48. Peralta-Videa, J.R., Hernandez-Viezcas, J.A., Zhao, L., 2014. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiology and Biochemistry, 80: 128–135. https://doi.org/10.1016/j.plaphy.2014.03.028
  49. Rajaie, M., Tavakoly, A.R., 2017. Iron and/or acid foliar spray versus soil application of Fe-EDDHA for prevention of iron deficiency in Valencia orange grown on a calcareous soil. Journal of Plant Nutrition, 41: 151–158. https://doi.org/10.1080/01904167.2017.1382523
  50. Rao, M.V., Paliyath, G., Ormrod, D.P., 1996. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology, 110: 125–136. https://doi.org/10.1104/pp.110.1.125
  51. Ressan, S.H., Al-Tememi, H.H., 2019. Study of evaluating the efficiency of biological and Nano-fertilizers treatments and their addition methods in some the physiological and productive characteristics of date palm Phoenix dactylifera L. Basrah Journal for Date Palm Research, 18: 84–101.
  52. Rout, G.R., Sahoo, S., 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3: 1–24. https://doi.org/10.7831/ras.3.1
  53. Saleh, J., 2008. Yield and chemical composition of “Piarom” date palm as affected by levels and methods of iron fertilization. International Journal of Plant Production, 2: 207–214. DOI: 10.22069/ijpp.2012.613
  54. Shareef, H.J., 2019. Salicylic acid and potassium nitrate promote flowering through modulating the hormonal levels and protein pattern of date palm Phoenix dactylifera “Sayer” offshoot. Acta Agriculturae Slovenica, 114: 231–238. https://doi.org/10.14720/aas.2019.114.2.8
  55. Shareef, H.J., 2020. Organic fertilizer modulates IAA and ABA levels and biochemical reactions of date palm Phoenix dactylifera L. Hillawi cultivar under salinity conditions. Asian Journal of Agriculture and Biology, 8: 24–30. https://doi.org/10.35495/ajab.2019.02.062
  56. Shareef, H.J., Abdi, G., Fahad, S., 2020. Change in photo synthetic pigments of Date palm offshoots under abiotic stress factors. Folia Oecologica, 47: 45–51. https://doi.org/10.2478/foecol-2020-0006
  57. Shareef, H.J., Alhamd, A.S., Naqvi, S.A., Eissa, M.A. 2021. Adapting date palm offshoots to long-term irrigation using groundwater in sandy soil. Folia Oecologica, 48: 55–62. https://doi.org/10.2478/foecol-2021-0007
  58. Shareef, H.J., Al-Khayri, J.M., 2021. Salt and drought stress exhibits oxidative stress and modulated protein patterns in roots and leaves of date palm (Phoenix dactylifera L.). Acta Agriculturae Slovenica, 117: 1–10. https://doi.org/10.14720/aas.2021.117.1.1829
  59. Shareef, H.J., AL-Tememi, I.H., Abdi, G., 2021. Foliar nutrition of date palm: advances and applications. A review. Folia Oecologica, 48: 82–100. https://doi.org/10.2478/foecol-2021-0010
  60. Shrivastava, P., Kumar, R., 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22: 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  61. Sun, H., Feng, F., Liu, J., Zhao, Q., 2017. The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice. Frontiers in Plant Science, 8: 2169, 14 p. https://doi.org/10.3389/fpls.2017.02169
  62. Tang, Y., Wang, L., Ma, C., Liu, J., Liu, B., Li, H., 2011. The use of HPLC in determination of endogenous ormones in anthers of bitter melon. Journal of Life Sciences, 5: 139–142.
  63. Tripler, E., Shani, U., Mualem, Y., Ben-Gal, A., 2011. Long-term growth, water consumption and yield of date palm as a function of salinity. Agricultural Water Management, 99: 128–134. https://doi.org/10.1016/j.agwat.2011.06.010
  64. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R.K., Kumar, V., Verma, R., Upadhyay, R.G., Pandey, M., Sharma, S., 2017. Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Science, 8: 161, 12 p. https://doi.org/10.3389/fpls.2017.00161
  65. Wani, A.S., Ahmad, A., Hayat, S., Tahir, I., 2019. Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant Physiology and Biochemistry, 135: 385–394. https://doi.org/10.1016/j.plaphy.2019.01.002
  66. Yassen, A., Abdallah, E., Gaballah, M., Zaghloul, S., 2017. Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.). International Journal of Agricultural Research, 12: 130–135. https://doi.org/10.3923/ijar.2017.130.135
  67. Youssef, T., Awad, M.A., 2008. Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. Journal of Plant Growth Regulation, 27: 1–9. https://doi.org/10.1007/s00344-007-9025-4
  68. Zagzog, O. A., Gad, M., 2017. Improving growth, flowering, fruiting and resistance of malformation of mango trees using nano-zinc. Middle East Journal of Agriculture Research, 6: 673–681.
  69. Zouari, M., Ben Ahmed, C., Zorrig, W., Elloumi, N., Rabhi, M., Delmail, D., Ben Rouina, B., Labrousse, P., Ben Abdallah, F., 2016. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.). Ecotoxicology and Environmental Safety, 128: 100–108. https://doi.org/10.1016/j.ecoenv.2016.02.015
DOI: https://doi.org/10.2478/foecol-2023-0017 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 185 - 195
Submitted on: Feb 14, 2023
Accepted on: May 17, 2023
Published on: Jul 26, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Hussein J. Shareef, Ahmed Y. L. Hzaa, Nabil I. Elsheery, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.