References
- Amin, M.M., Hashemi, H., Bovini, A.M., Hung, Y.T., 2013. A review on wastewater disinfection. International Journal of Environmental Health Engineering, 2: 22–30. DOI: 10.4103/2277-9183.113209
- Añasco, N.C., Koyama, J., Imai, S., Nakamura, K., 2008. Toxicity of residual chlorines from hypochlorite-treated seawater to marine amphipod Hyale barbicornis and estuarine fish Oryzias javanicus. Water, Air, & Soil Pollution, 195: 129–136. https://doi.org/10.1007/s11270-008-9732-x
- Anonymus, 1992. NTP Toxicology and carcinogenesis studies of chlorinated water (CAS NOS 7782-50-5 and 7681-52-9) and chloraminated water (CAS No. 10599-90-3) (Deionized and charcoal-filtered) in F344/N rats and B6C3F1 mice (drinking water studies). National Toxicology Program Technical Report Series, 392. U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program, Research Triangle Park, NC. 466 p.
- Anonymus,, 2015. Hasa 12.5% sodium hypochlorite solution. Safety Data Sheet (SDS), No. 106.
- Arrate, J.A., Rodriguez, P., Martinez-Madrid, M., 2004. Tubifex tubifex chronic toxicity test using artificial sediment: methodological issues. Limnetica, 23: 25–36. [cit. 2019-10-26]. https://pdfs.semanticscholarorg/8d95/465692597172b2d3d5f3d94f34bb3d5eb504.pdf
- ASTM E1706-05, 2010. Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. ASTM International, West Conshohocken, PA.
- Bayo, J., Angosto, J.M., Gómez-López, M.D., Oleaga, I., García, C., 2009a. Toxicity assessment of chlorinated secondary effluents by the Vibrio fischeri bioluminescence assay. In Brebbia, C.A. (ed.). Environmental health risk. Southampton, Boston: WIT Press, p. 329–340.
- Bayo, J., Angosto, J.M., Gómez-López, M.D., 2009b. Ecotoxicological screening of reclaimed disinfected wastewater by Vibrio fischeri bioassay after a chlorination– dechlorination process. Journal of Hazardous Materials, 172: 166–171. DOI:10.1016/j.jhazmat.2009.06.157
- Berninger da Costa, J., Rodgher, S., Daniel, L.A., Espíndole, E.L.G., 2014. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation. Ecotoxicology, 23: 1803–1813. https://doi.org/10.1007/s10646-014-1346-z
- Bilous, O., Barinova, S., Klochenko, P., 2012. Phytoplankton communities in ecological assessment of the Southern Bug River upper reaches (Ukraine). Ecohydrology and Hydrobiology, 12: 211–230. https://doi.org/10.1016/S1642-3593(12)70205-7
- Binetti, R., Attias, L., 2009. Sodium hypochlorite. CAS No.: 7681-52-9, EINECS No.: 231-668-3. Summary Risk Assessment Report. Roma, Italy. 47 p.
- Bulich, A.A., 1979. Use of luminescent bacteria for determining toxicity in aquatic environments. In Marking, L.L., Kimerle, R.A. (eds). Aquatic toxicology. ASTM STP 667. Philadelphia, PA: American Society for Testing and Materials, p. 98–110.
- Davoren, M., Ní Shúilleabháin, S., O’Halloran, J., Hartl, M.G.J., Sheehan, D., O’Brien, N.M., van Pelt, F.N.A.M., Mothersill, C., 2005. A test battery approach for the ecotoxicological evaluation of estuarine sediments. Ecotoxicology, 14: 741–755. https://doi.org/10.1007/s10646-005-0022-8
- DIN EN ISO, 2009. Water quality – Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminiscent bacteria test) - Part 2: Method using liquid dried bacteria (DIN EN ISO 11348-2:2009-05).
- Dobbs, F.C., 2005. Ridding ships’ ballast water of microorganisms. Environmental Science & Technology, 39: 259A–264A. https://doi.org/10.1021/es053300v
- Emmanuel, E., Keck, G., Blanchard, J.M., Vermande, P., Perrodin, Y., 2004. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environment International, 30: 891–900. https://doi.org/10.1016/j.envint.2004.02.004
- Fargašová, A., 2017. Plant stress activated by chlorine from disinfectants prepared on the base of sodium hypochlorite. Nova Biotechnolgica et Chimica, 16: 76–85. https://doi.org/10.1515/nbec-2017-0011
- Ferrão-Filho, A.S., Soares, M.C.S., Magalhaes, V.F., Azevedo, S.M.F.O., 2010. A rapid bioassay for determining saxitoxins using a Daphnia acute toxicity test. Environmental Pollution, 185: 2084–2093. https://doi.org/10.1016/j.envpol.2010.03.007
- Gibbons, J., Laha, S., 1999. Water purification systems: a comparative analysis based on the occurrence of disinfection by-products. Environmental Pollution, 106: 425–428. https://doi.org/10.1016/S0269-7491(99)00097-4
- Hidalgo, E., Bartolome, R., Dominguez, C., 2002. Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness. Chemico Biological Interactions, 139: 265–282. https://doi.org/10.1016/S0009-2797(02)00003-0
- Hrudey, S.F., 2009. Chlorination disinfection by-products, public health risk tradeoffs and me. Water Research, 43: 2057–2092. https://doi.org/10.1016/j.watres.2009.02.011
- Junli, H., Li, W., Nenqi, R., Li, L.X., Fun, S.R., Guanle, Y., 1997. Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water. Water Research, 31: 455–460. https://doi.org/10.1016/S0043-1354(96)00276-X
- Kim, K., Kim, K.Y., Kim, J.-H., Kang, E.J., Jeong, H.J., Lee, K., 2013. Synergistic effects of elevated carbon dioxide and sodium hypochlorite on survival and impairment of three phytoplankton species. Algae, 28: 173–183. https://doi.org/10.4490/algae.2013.28.2.173
- Leynen, M., Van Den Berckt, T., Aerts, J.M., Castelein, B., Berckmans, D., Ollevier, F., 1999. The use of Tubificidae in a biological early warning system. Environmental Pollution, 105: 151–154. https://doi.org/10.1016/S0269-7491(98)00144-4
- Li, J., Wang, W., Moe, B., Wang, H., Li, X.F., 2015. Chemical and toxicological characterization of halobenzoquinones, an emerging class of disinfection byproducts. Chemical Research in Toxicology, 28: 306–318. https://doi.org/10.1021/tx500494r
- López-Galindo, C., Garrido, M.C., Casanueva, J.F., Nebot, E., 2010. Degradation models and ecotoxicity in marine waters of two antifouling compounds: sodium hypochlorite and an alkylamine surfactant. Science of the Total Environment, 408: 1779–1785. https://doi.org/10.1016/j.scitotenv.2010.01.029
- Luttrell, W., 2001. Toxic tips: sodium hypochlorite. ACS Chemical Health & Safety, 8: 24–26. https://doi.org/10.1016/S1074-9098(01)00266-0
- Manning, T.M., Wilson, S.P., Chapman, J.C., 1996. Toxicity of chlorine and other chlorinated compounds to some Australian aquatic organisms. Bulletin of Environmental Contamination and Toxicology, 56: 971–976. https://doi.org/10.1007/s001289900140
- Mohammadi, Z., 2008. Sodium hypochlorite in endodontics: an update review. International Dental Journal, 58: 329–341. https://doi.org/10.1111/j.1875-595X.2008.tb00354.x
- OECD, 2004. Daphnia sp. – acute immobilization Test 202. OECD Guidelines for the Testing of Chemicals, Paris. 12 p.
- OECD, 2011. Freshwater alga and cyanobacteria, growth inhibition test 201. OECD Guidelines for the Testing of Chemicals, Paris. 25 p.
- Parvez, S., Venkataraman, Ch., Mukherji, S., 2006. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32: 265–268. https://doi.org/10.1016/j.envint.2005.08.022
- Pignata, C., Fea, E., Degan, R., Lorenzi, E., De Ceglia, M., Schiliro, T., Gilli, G., 2012. Chlorination in a wastewater treatment plant acute toxicity effects of the effluent and of the recipient water body. Environmental Monitoring and Assessment, 184: 2091–2103. DOI: 10.1007/s10661-011-2102-y
- Rajfur, M., Krems, P., Kłos, A., Kozłowski, R., Jóźwiak, M.A., Kříž, J., Waclawek, M., 2016. Application of algae in active biomonitoring of the selected holding reservoirs in Swietokrzyskie province. Ecological Chemistry and Engineering S, 23: 237–247. https://doi.org/10.1515/eces-2016-0016
- Rav-Acha, Ch., Kummel, M., Salamon, I., Adin, A., 1995. The effect of chemical oxidants on effluent constituents for drip irrigation. Water Research, 29: 119–129. https://doi.org/10.1016/0043-1354(94)E0113-K
- Repetto, G., 2013. Test batteries in ecotoxicology. Chapter 99. In Férard, J.-F., Blaise, C. (eds). Encyclopedia of aquatic ecotoxicology. Dordrecht, The Netherlands: Springer Publishers, p. 1105–1128.
- Sapone, A., Canistro, D., Vivarelli, F., Paolini, M., 2016. Perturbation of xenobiotic metabolism in Dreissena polymorpha model exposed in situ to surface water (Lake Trasimene) purified with various disinfectants. Chemosphere, 144: 548–554. https://doi.org/10.1016/j.chemosphere.2015.09.022
- Singleton, H.J., Bio, R.P., 1989. Ambient water quality criteria for chlorine technical appendix.Vancouver: Ministry of Environment, Province of British Columbia. 114 p.
- Sun, X.B., Cui, F.Y., Zhang, J.S., Guo, Z.H., Xu, F., Liu, L.I., 2005. Toxicity and influencing factor of liquid chlorine on chironomid larvae. Huan Jing Ke Xue, 25: 95–99. [cit. 2019-10-26]. https://www.ncbi.nlm.nih.gov/pubmed/18290484.
- Ton, S.-S., Chang, S.-H., Hsu, L.-Y., Wang, M.-H., Wang, K.-S., 2012. Evaluation of acute toxicity and teratogenic effects of disinfectants by Daphnia magna embryo assay. Environmental Pollution, 168: 54–61. https://doi.org/10.1016/j.envpol.2012.04.008
- US EPA, 1984. Ambient water quality criteria for chlorine -84. EPA 440/5-84-030, Office of Water Regulations and Standards, Washington DC 20460. 64 p.
- US EPA, 1986. Quality criteria for water 1986. EPA 440/5-86-001, Washington, DC.
- US EPA, 1991. EPA R.E.D. Facts – sodium and calcium hypochlorite salts. Office of Pesticides and Toxic Substances, Washington, DC.
- US EPA, 1994. Chemical summary for chlorine. United States Environmental Protection Agency Offices of pollution prevention and toxics, Cincinnati.
- Villanueva, C.M., Cordier, S., Font-Ribera, L., Salas, L.A., Levallois, P., 2015. Overview of disinfection by-products and associated health effects. Current Environmental Health Reports, 2: 107–115. https://doi.org/10.1007/s40572-014-0032-x
- Wojtal-Frankiewicz, A., Frankiewicz, P., 2011. The impact of pelagic (Daphnia longispina) and benthic (Dreissena polymorpha) filter feeders on chlorophyll and nutrient concentration. Limnologica, 41: 191–200. https://doi.org/10.1016/j.limno.2010.09.001
- Yang, M., Zhang, X., 2013. Comparative development toxicity of new aromatic halogenated DBPs in chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environmental Science & Technology, 47: 10868–10876. https://doi.org/10.1021/es401841t
- Zhai, H., Zhang, X., Zhu, X., Liu, J., Ji, M., 2014. Formation of bromated disinfection byproducts during chloramination of drinking water: New polar species and overall kinetics. Environmental Science & Technology, 48: 2579–2588. https://doi.org/10.1021/es4034765