Have a personal or library account? Click to login
Diversity of soils in the Dnipro River valley (based on the example of the Dnipro-Orilsky Nature Reserve) Cover

Diversity of soils in the Dnipro River valley (based on the example of the Dnipro-Orilsky Nature Reserve)

Open Access
|Jul 2023

References

  1. Beaudette, D., Roudier, P., Brown, A., 2022. aqp: algorithms for quantitative pedology. R package version 1.42.
  2. Blume, H. P., Schwertmann, U., 1969. Genetic evaluation of profile distribution of aluminum, iron, and manganese oxides. Soil Science Society of America Journal, 33(3): 438–444. https://doi.org/10.2136/sssaj1969.03615995003300030030x
  3. Bock, M., Köthe, R., 2008. Predicting the depth of hydro-morphic soil characteristics influenced by ground water. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, 19: 13–22.
  4. Bockheim, J.G., Hartemink, A.E., 2013. Classification and distribution of soils with lamellae in the USA. Geoderma, 206: 92–100. https://doi.org/10.1016/j.geoderma.2013.04.014
  5. Bujnovský, R., Koco, Š., 2022. Definition of hot-spots to reduce the nitrogen losses from agricultural land to groundwater in Slovakia. Ekológia (Bratislava), 41 (3): 291–300. https://doi.org/10.2478/eko-2022-0030
  6. Bullinger-Weber, G., Gobat, J.-M., 2006. Identification of facies models in alluvial soil formation: the case of a Swiss alpine floodplain. Geomorphology, 74 (1–4): 181–195. https://doi.org/10.1016/j.geomorph.2005.07.016
  7. Demir, T., Westaway, R., Bridgland, D., 2018. The influence of crustal properties on patterns of Quaternary fluvial stratigraphy in Eurasia. Quaternary, 1 (3): 28. https://doi.org/10.3390/quat1030028
  8. Didukh, Y.P., Chusova, O.O., Olshevska, I.A., Polishchuk, Y.V., 2015. River valleys as the object of ecological and geobotanical research. Ukrainian Botanical Journal, 72 (5): 415–430. https://doi.org/10.15407/ukrbotj72.05.415
  9. Diviaková, A., Veverková, D., Belaňová, E., 2022. Proposals to promote ecological stability and landscape biodiversity conditions in the land consolidation project: a case study of Horný Vinodol, Slovakia. Ekológia (Bratislava), 41 (4): 361–374. https://doi.org/10.2478/eko-2022-0037
  10. El Hourani, M., Broll, G., 2021. Soil protection in flood-plains—A review. Land, 10 (2): 149. https://doi.org/10.3390/land10020149
  11. ESRI, 2011. Environmental Systems Research. ArcGIS Desktop: release 10. CA, USA: Redlands.
  12. Field, J.P., Breshears, D.D., Whicker, J.J., 2009. Toward a more holistic perspective of soil erosion: Why aeolian research needs to explicitly consider fluvial processes and interactions. Aeolian Research, 1 (1–2): 9–17. https://doi.org/10.1016/j.aeolia.2009.04.002
  13. Gerrard, J., 1987. Alluvial soils. Van Nostrand Reinhold Soil Science Series. New York: Van Nostrand Reinhold. 305 p.
  14. Gregory, S.V., Swanson, F.J., McKee, W.A., Cummins, K.W., 1991. An ecosystem perspective of riparian zones. Bio Science, 41(8): 540–551. https://doi.org/10.2307/1311607
  15. Gritsan, Y.I., Kunakh, O.M., Dubinina, J.J., Kotsun, V.I., Tkalich, Y.I., 2019. The catena aspect of the landscape diversity of the «Dnipro-Orilsky» natural reserve. Journal of Geology, Geography and Geoecology, 28 (3): 417–431. https://doi.org/10.15421/111939
  16. Gus-Stolarczyk, M., Drewnik, M., Szymański, W., Stolarczyk, M., 2022. Impact of podzolization on lamellae transformation in sandy soils in a temperate climate – A case study from southern Poland. Geoderma, 406: 115535. https://doi.org/10.1016/j.geoderma.2021.115535
  17. Hale, R., Reich, P., Daniel, T., Lake, P.S., Cavagnaro, T.R., 2014. Scales that matter: guiding effective monitoring of soil properties in restored riparian zones. Geoderma, 228–229: 173–181. https://doi.org/10.1016/j.geoderma.2013.09.019
  18. Hojati, M., Mokarram, M., 2016. Determination of a topo-graphic wetness index using high resolution digital elevation models. European Journal of Geography, 7 (4): 41–52.
  19. Holliday, V.T., Rawling, J. E., 2006. Soil-geomorphic relations of lamellae in eolian sand on the High Plains of Texas and New Mexico. Geoderma, 131 (1–2): 154–180. https://doi.org/10.1016/j.geoderma.2005.03.019
  20. Kawalko, D., Jezierski, P., Kabala, C., 2021. Morphology and physicochemical properties of alluvial soils in riparian forests after river regulation. Forests, 12 (3): 329. https://doi.org/10.3390/f12030329
  21. Kercheva, M., Sokołowska, Z., Hajnos, M., Skic, K., Shishkov, T., 2017. Physical parameters of Fluvisols on flooded and non-flooded terraces. International Agrophysics, 31 (1): 73–82. https://doi.org/10.1515/intag-2016-0026
  22. Kothyari, G.C., Luirei, K., 2016. Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: Central Kumaun Himalaya. Geomorphology, 268: 159–176. https://doi.org/10.1016/j.geomorph.2016.06.010
  23. Krasa, J., Dostal, T., Jachymova, B., Bauer, M., Devaty, J., 2019. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs – Watershed analyses using WaTEM/SEDEM. Environmental Research, 171: 470–483. https://doi.org/10.1016/j.envres.2019.01.044
  24. Kunakh, O.M., Yorkina, N.V., Zhukov, O.V., Turovtseva, N.M., Bredikhina, Y.L., Logvina-Byk, T.A., 2020. Recreation and terrain effect on the spatial variation of the apparent soil electrical conductivity in an urban park. Biosystems Diversity, 28 (1): 3–8. https://doi.org/10.15421/012001
  25. Kunakh, O., Zhukova, Y., Yakovenko, V., Daniuk, O., 2022. Influence of plants on the spatial variability of soil penetration resistance. Ekológia (Bratislava), 41 (2): 113–125. https://doi.org/10.2478/eko-2022-0012
  26. Kunakh, O., Zhukova, Y., Yakovenko, V., Zhukov, O., 2023. The role of soil and plant cover as drivers of soil macrofauna of the Dnipro River floodplain ecosystems. Folia Oecologica, 50 (1): 16–43. https://doi.org/10.2478/foecol-2023-0002
  27. Liu, B., Coulthard, T.J., 2015. Mapping the interactions between rivers and sand dunes: implications for fluvial and aeolian geomorphology. Geomorphology, 231: 246–257. https://doi.org/10.1016/j.geomorph.2014.12.011
  28. Luirei, K., Bhakuni, S.S., Kothyari, G.C., 2018. Geomorphologic study of the valley floor in different tectonic segments along Kosi River valley between South Almora Thrust and Himalayan Frontal Thrust: Kumaun Himalaya, India. Geological Journal, 53 (4): 1500–1515. https://doi.org/10.1002/gj.2969
  29. Ma, Y., Minasny, B., Viaud, V., Walter, C., Malone, B., McBratney, A., 2023. Modelling the whole profile soil organic carbon dynamics considering soil redistribution under future climate change and landscape projections over the Lower Hunter Valley, Australia. Land, 12 (1): 255. https://doi.org/10.3390/land12010255
  30. Manyuk, V., 2019. Geological history of the Dnipro Rapids from Paleogene to Holocene. Journal of Geology, Geography and Geoecology, 28 (1): 114–132. https://doi.org/10.15421/111913
  31. Manyuk, V., 2005. Structure, typology, dynamics and restoring oaks in the Dnyprovsko–Orylsky Nature Reserve [Struktura, typolohiia, dynamika ta vidnovlennia dibrov u Dniprovsko-Orilskomu pryrodnomu zapovidnyku]. PhD thesis. Biol. Sciences: 03.00.16. Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk.
  32. Mounirou, L.A., Yonaba, R., Tazen, F., Ayele, G.T., Yaseen, Z.M., Karambiri, H., Yacouba, H., 2022. Soil erosion across scales: assessing its sources of variation in Sahelian landscapes under semi-arid climate. Land, 11 (12): 2302. https://doi.org/10.3390/land11122302
  33. Oksanen, J., Simpson, G.L., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Beolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.B.A., Rich, F., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Oulette, M.-H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F., Weedeon, J., 2022. vegan: Community Ecology Package. R package version 2.6-4. [cit. 2023-03-21]. https://cran.r-project.org/package=vegan
  34. Olaya, V., Conrad, O., 2009. Chapter 12 Geomorphometry in SAGA. In Hengl, T., Reuter, I.H. (eds). Geomorphometry: concepts, software, applications. Developments in Soil Science. Elsevier, p. 293–308). https://doi.org/10.1016/S0166-2481(08)00012-3
  35. Panin, A., Adamiec, G., Arslanov, K.A., Bronnikova, M., Filippov, V., Sheremetskaya, E., Zaretskaya, N.E., Zazovskaya, E.P., 2014. Absolute chronology of fluvial events in the Upper Dnieper River system and its palaeo-geographic implications. Geochronometria, 41 (3): 278–293. https://doi.org/10.2478/s13386-013-0154-1
  36. Parkhomenko, O., 2015. Holocene paedogenesis of overflow plains in the middle Prydniprovia area. Scientific Journal National Pedagogical Dragomanov University. Seria 4. Geography and Modernity, 19 (33): 63–73.
  37. Pazzaglia, F.J., 2013. 9.22 Fluvial terraces. In Shroder, J.F. (ed.). Treatise on geomorphology. Elsevier, p. 379–412. https://doi.org/10.1016/B978-0-12-374739-6.00248-7
  38. Pazzaglia, F.J., Gardner, T.W., 1993. Fluvial terraces of the lower Susquehanna River. Geomorphology, 8 (2–3): 83–113. https://doi.org/10.1016/0169-555X(93)90031-V
  39. Ponomarenko, O.M., Nykyforov, V.V., Yakovenko, V.M., 2022. Changes of chemical and micromorphological properties of Poltava region soils of Ukraine for the last 130 years. Ukrainian Geographical Journal, No. 1: 18–26. https://doi.org/10.15407/ugz2022.01.018
  40. Rawling, J.E., 2000. A review of lamellae. Geomorphology, 35 (1–2): 1–9. https://doi.org/10.1016/S0169-555X(00)00015-5
  41. Rinklebe, J., Langer, U., 2006. Microbial diversity in three floodplain soils at the Elbe River (Germany). Soil Biology and Biochemistry, 38 (8): 2144–2151. https://doi.org/10.1016/j.soilbio.2006.01.018
  42. Rozanov, B.G., 2004. Soil morphology [Morfologia pochv]. Moscow: Academic project. Moscow University Press. 432 p.
  43. Šamonil, P., Daněk, P., Schaetzl, R.J., Tejnecký, V., Drábek, O., 2018. Converse pathways of soil evolution caused by tree uprooting: a synthesis from three regions with varying soil formation processes. Catena, 161: 122–136. https://doi.org/10.1016/j.catena.2017.09.032
  44. Scoggins, H.L., Van Iersel, M.W., 2006. In situ probes for measurement of electrical conductivity of soilless substrates: effects of temperature and substrate moisture content. HortScience, 41 (1): 210–214. https://doi.org/10.21273/hortsci.41.1.210
  45. Serra-Llobet, A., Jähnig, S.C., Geist, J., Kondolf, G.M., Damm, C., Scholz, M., Lund, J., Opperman, J.J., Yarnell, S.M., Pawley, A., Shader, E., Cain, J., Zingraff-Hamed, A., Grantham, T.E., Eisenstein, W., Schmitt, R., 2022. Restoring rivers and floodplains for habitat and flood risk reduction: experiences in multi-benefit gloodplain management from California and Germany. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.778568
  46. Słowik, M., 2023. The evolution of meandering and anabranching rivers in postglacial and loess landscapes of Europe. The Holocene, 33 (2): 208–230. https://doi.org/10.1177/09596836221131712
  47. Stolt, M.H., Genthner, M.H., Daniels, W.L., Groover, V.A., 2001. Spatial variability in palustrine wetlands. Soil Science Society of America Journal, 65 (2): 527–535. https://doi.org/10.2136/sssaj2001.652527x
  48. Susetyo, C., 2016. Comparison of digital elevation modelling methods for urban environment. ARPN Journal of Engineering and Applied Sciences, 11 (5): 2957–2965.
  49. Świtoniak, M., Michalski, A., Markiewicz, M., 2022. Classification of alluvial soils – problematic issues on the examples from South Baltic Lakelands, north Poland. Soil Science Annual, 73 (3): 1–11. https://doi.org/10.37501/soilsa/157099
  50. Thioulouse, J., Dray, S., Dufour, A.-B., Siberchicot, A., Jombart, T., Pavoine, S., 2018. Multivariate analysis of ecologicaldData with ade4. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-8850-1
  51. Valerko, R., Herasymchuk, L., Pitsil, A., Palkevich, J., 2022. Gis-based assessment of risk for drinking water contamination to children’s health in rural settlements. Ekológia (Bratislava), 41 (4): 312–321. https://doi.org/10.2478/eko-2022-0032
  52. Wälder, K., Wälder, O., Rinklebe, J., Menz, J., 2008. Estimation of soil properties with geostatistical methods in floodplains. Archives of Agronomy and Soil Science, 54 (3): 275–295. https://doi.org/10.1080/03650340701488485
  53. Ward, J. V, Malard, F., Tockner, K., 2002. Landscape ecology: a framework for integrating pattern and process in river corridors. Landscape Ecology, 17 (1): 35–45. https://doi.org/10.1023/A:1015277626224
  54. Woronko, B., Zagórski, Z., Cyglicki, M., 2022. Soil-development differentiation across a glacial–interglacial cycle, Saalian upland, E Poland. Catena, 211: 105968. https://doi.org/10.1016/j.catena.2021.105968
  55. WRB, 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.
  56. Yan, Q., Iwasaki, T., Stumpf, A., Belmont, P., Parker, G., Kumar, P., 2018. Hydrogeomorphological differentiation between floodplains and terraces. Earth Surface Processes and Landforms, 43 (1): 218–228. https://doi.org/10.1002/esp.4234
  57. Yang, F., Zhang, G.-L., Sauer, D., Yang, F., Yang, R.-M., Liu, F., Song, X.-D., Zhao, Y-D., Li, D.-C., Yang, J.-L., 2020. The geomorphology – sediment distribution – soil formation nexus on the northeastern Qinghai-Tibetan Plateau: implications for landscape evolution. Geomorphology, 354: 107040. https://doi.org/10.1016/j.geomorph.2020.107040
  58. Zaidel’man, F.R., Stepantsova, L.V., Nikiforova, A.S., Krasin, V.N., Dautokov, I.M., Krasina, T.V., 2018. Light gray surface-gleyed loamy sandy soils of the northern part of Tambov Plain: agroecology, properties, and diagnostics. Eurasian Soil Science, 51 (4): 395–406. https://doi.org/10.1134/S1064229318040130
  59. Zhukov, O., Kunakh, O., Yorkina, N., Tutova, A., 2023. Response of soil macrofauna to urban park reconstruction. Soil Ecology Letters, 5 (2): 220156. https://doi.org/10.1007/s42832-022-0156-0
  60. Zhukov, O., Yorkina, N., Budakova, V., Kunakh, O., 2021. Terrain and tree stand effect on the spatial variation of the soil penetration resistance in Urban Park. International Journal of Environmental Studies, 79: 485–501. https://doi.org/10.1080/00207233.2021.1932368
  61. Zhukov, O.V., Zadorozhnaya, G.O., Kotsun, V.I., Mizin, M.S., 2017. Soddy-alluvial soils of the River Dniepro floodplain within the natural reserve “Dnieper-Orelsky”: morphology and profile distribution of the physical properties. News of Dnipropetrovsk State Agrarian and Economic University, 3 (45): 44–55.
  62. Zuffetti, C., Trombino, L., Zembo, I., Bersezio, R., 2018. Soil evolution and origin of landscape in a late Quaternary tectonically mobile setting: the Po Plain-Northern Apennines border in Lombardy (Italy). Catena, 171: 376–397. https://doi.org/10.1016/j.catena.2018.07.026
  63. Zymaroieva, A., Bondarev, D., Kunakh, O., Svenning, J.-C., Zhukov, O., 2022. Which fish benefit from the combined influence of eutrophication and warming in the Dnipro River (Ukraine)? Fishes, 8 (1): 14. https://doi.org/10.3390/fishes8010014
DOI: https://doi.org/10.2478/foecol-2023-0011 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 119 - 133
Submitted on: Apr 23, 2023
|
Accepted on: Jun 13, 2023
|
Published on: Jul 26, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Volodymyr Yakovenko, Olga Kunakh, Hanna Tutova, Olexander Zhukov, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.