Have a personal or library account? Click to login
Cycling and status of cobalt in some forest types Cover

References

  1. Banerjee, P., Bhattacharya, P., 2021. Investigating cobalt in soil plant animal human system: dynamics, impact and management. Journal of Soil Science and Plant Nutrition, 21: 2339–2354. https://doi.org/10.1007/s42729-021-00525-w
  2. Barket, A., Shamsul, H., Qaiser, H., Aqil, A., 2010. Cobalt stress affects nitrogen metabolism, photosynthesis and antioxidant system in chickpea (Cicer arietinum L.). Journal of Plant Interactions, 5: 223–231. https://doi.org/10.1080/17429140903370584
  3. Biswas, S., Dey, R., Mukherjee, S., Banerjee, P.C., 2013. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger. Applied Biochemistry and Bio-technology, 170: 1547–1559. https://doi.org/10.1007/s12010-013-0289-9
  4. FAO-UNESCO, 1988. Soil map of the world. Rome: FAO, UNESCO. 119 p.
  5. Galloway, J.N., Thornton, J.D., Norton, S.A., Volchok H.I., McLean R.A.N., 1982. Trace metals in atmospheric deposition: a review and assessment. Atmospheric Environment, 16: 1677–1700. https://doi.org/10.1016/0004-6981(82)90262-1
  6. Gandois, L., Probst, A., Dumat, C., 2010. Modelling trace metal extractability and solubility in French forest soils by using soil properties. European Journal of Soil Science, 61: 271–286. https://doi.org/10.1111/j.1365-2389.2009.01215.x
  7. Gosz, J.R., Likens, G.E., Bormann, F.H., 1976. Organic matter and nutrient dynamics of the forest floor in the Hubbard forest. Oecologia, 22: 305–320. https://doi.org/10.1007/BF00345310
  8. Hernandez, L., Probst, A., Probst, J.L., Ulrich, E., 2003. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Science of the Total Environment, 312: 195–219. https://doi.org/10.1016/S0048-9697(03)00223-7
  9. Hu, X., Xiangying, W., Jie, L., Jianjun, C., 2021. Cobalt: an essential micronutrient for plant growth? Frontiers in Plant Science, 12: article 768523. https://doi.org/10.3389/fpls.2021.768523
  10. Kabata-Pendias, A., Pendias, H., 2001. Trace elements in soils and plants. Boca Raton, FL: CRC Press. 403 p.
  11. Klasson, M., Bryngelsson, I.L., Pettersson, C., Husby, B., Arvidsson, H., Westberg, H., 2016. Occupational exposure to cobalt and tungsten in the Swedish hard metal industry: air concentrations of particle mass, number, and surface area. Annals of Occupational Hygiene, 60: 684–699. https://doi.org/10.1093/annhyg/mew023
  12. Krasnodebska-Ostrega, B., Emons, H., Golimowsky, J., 2001. Selective leaching of elements associated with Mn – Fe oxides in forest soil, and comparison of two sequential extraction methods. Fresenius Journal of Analytical Chemistry, 371: 385–390. DOI: 10.1007/s002160100982
  13. Krishna, A.K., Govil, P.K., 2007. Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124: 263–275. https://doi.org/10.1007/s10661-006-9224-7
  14. Maňkovská, B., 1998. The chemical composition of spruce and beech foliage as an environmental indicator in Slovakia. Chemosphere, 36: 949–953. https://doi.org/10.1016/S0045-6535(97)10153-9
  15. Mathur, N., Singh, J., Bohra, S., Bohra, A., Vyas, A., 2006. Effect of soil compaction potassium and cobalt on growth and yield of moth bean. International Journal of Soil Science, 1: 269–271. DOI: 10.3923/ijss.2006.269.271
  16. Matschullat, J., Maenhaut, W., Zimmermann, F., Fiebig, J., 2000. Aerosol and bulk deposition trends in the 1990’s, Eastern Erzgebirge, Central Europe. Atmospheric Environment, 34: 3213–3221. https://doi.org/10.1016/S1352-2310(99)00516-6
  17. McLaren, R.G., Lawson, D.M., Swift, R.S., 1986. Sorption and desorption of cobalt by soils and soil components. Journal of Soil Science, 37: 413–426. https://doi.org/10.1111/j.1365-2389.1986.tb00374.x
  18. Michopoulos, P., Kostakis, M., Bourletsikas, A., Kaoukis, K., Pasias, I., Grigoratos, T., Thomaidis, N., Samara, C., 2022. Concentrations of three rare elements in the hydrological cycle and soil of a mountainous fir forest. Annals of Forest Research, 65: 155–164. DOI: 10.15287/afr.2022.2300
  19. Michopoulos, P., Solomou, A., Grigoratos, T., Samara, C., 2020. Availability and uptake of phosphorus in soils of forest ecosystems. Forestry Ideas, 26: 404–415.
  20. Neal, C., Robinson, M., Reynolds, B., Neal, M., Rowland, P., Grant, S., Norris, D., Williams, B., Sleep, D., Lawlor, A., 2010. Hydrology and water quality of the headwaters of the River Severn: stream acidity recovery and interactions with plantation forestry under an improving pollution climate. Science of the Total Environment, 408: 5035–5051. https://doi.org/10.1016/j.scitotenv.2010.07.047
  21. Orji, J., Ngumah, C., Asor, A., Anuonyemere, A., 2018. Effects of cobalt and manganeseon biomass and nitrogen fixation yields of a free-living nitrogen fixer - Azotobacter chroococcum. European Journal of Biological Research, 8:7–13. DOI: http://dx.doi.org/10.5281/zenodo.1157098
  22. Poissant, L., Schmit, J.P., Beron, P., 1994. Trace inorganic elements in rainfall in the Montreal Island. Atmospheric Environment, 28: 339–346. https://doi.org/10.1016/1352-2310(94)90109-0
  23. Singh, A.K., Cameotra, S.S., 2013. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environmental Science and Pollution Research, 20: 7367–7376. https://doi.org/10.1007/s11356-013-1752-4
  24. Song, F., Gao, Y., 2009. Chemical characteristics of precipitation at metropolitan Newark in the US East Coast. Atmospheric Environment, 43: 4903–4913. https://doi.org/10.1016/j.atmosenv.2009.07.024
  25. Steiness, E., Friedland, A.J., 2005. Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environmental Reviews, 14: 169–186.https://doi.org/10.1139/a06-002
  26. Suchara, I., Sucharová, J., 2002. Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water, Air and Soil Pollution, 136: 289–316. https://doi.org/10.1023/a:1015235924991
  27. Tyler, G., 2005. Changes in the concentrations of major, minor and rare-earth elements during leaf senescence decomposition in a Fagus sylvatica forest. Forest Ecology and Management, 206: 167–177. https://doi.org/10.1016/j.foreco.2004.10.065
  28. UN-ICP-Forests. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests operating under the UNECE Convention on Long-range Transboundary Air Pollution (CLRTAP). [online]. [cit. 2022-08-30]. www.icp-forests.org
  29. Zhou, J., Wang, Y., Yue, T., Li. Y, Wai, K.M., Wan, W., 2012. Origin and distribution of trace elements in high-elevation precipitation in southern China. Environmental Science and Pollution Research, 19: 3389–3399. https://doi.org/10.1007/s11356-012-0863-7
DOI: https://doi.org/10.2478/foecol-2023-0006 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 72 - 79
Submitted on: Sep 13, 2022
Accepted on: Nov 8, 2022
Published on: Jan 27, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Panagiotis Michopoulos, Marios Kostakis, Kostas Kaoukis, Athanassios Bourletsikas, Alexandra Solomou, Ioannis Pasias, Nikolaos Thomaidis, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.