Have a personal or library account? Click to login
Modified electrolyte leakage method for testing the oxidative stability of Pinus mugo Turra under ozone-induced stress Cover

Modified electrolyte leakage method for testing the oxidative stability of Pinus mugo Turra under ozone-induced stress

Open Access
|Jan 2023

References

  1. Alscher, R.G., Erturk, N., Heath, L.S, 2002. Role of superoxide dismutase (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53: 1331–1341. https://doi.org/10.1093/jexbot/53.372.1331
  2. Badea, O., Tanase, M., Georgeta, J., Anisoara, L., Peiov, A., Uhlirova, H., Pajtik, J., Wawrzoniak, J., Shparyk, Y., 2004. Forest health status in the Carpathian Mountains over the period 1997–2001. Environmental Pollution, 130: 93–98. https://doi.org/10.1016/j.envpol.2003.10.024
  3. Bajji, M., Kinet, J.M., Lutts, S., 2002. The use of the electrolyte leakage method for assessing cell mem brane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36: 61–70. https://doi.org/10.1023/A:1014732714549
  4. Ballian, D., Ravazzi, C., de Rigo, D., Caudullo, G., 2016. Pinus mugo in Europe: distribution, habitat, usage and threats. In San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (eds). European atlas of forest tree species. [online]. [cit. 2022-08-11]. Luxembourg: Publications Office of the European Union, p. 125.https://data.europa.eu/doi/10.2760/776635
  5. Bechtel, A., Oberauer, K., Kostić A., Gratzer, R., Milisavljević, V., Aleksić, N., Stojanović, K., Gross, D., Sachsenhofer, R.F., 2018. Depositional environment and hydrocarbon source potential of the Lower Miocene oil shale deposit in the Aleksinac Basin (Serbia). Organic Geochemistry, 115: 93–112. https://doi.org/10.1016/j.orggeochem.2017.10.009
  6. Bell, M.D., Felker-Quinn, E., Kohut, R., 2020. Ozone sensitive plant species on National Park Service lands. [online]. [cit. 2022-08-08]. Natural Resource Report NPS/WASO/NRR—2020/2062. Colorado: U.S. Department of the Interior, National Park Service, Natural Resource Stewardship and Science. https://irma.nps.gov/DataStore/DownloadFile/636658
  7. Bičárová, S., Sitková, Z., Pavlendová, H., Fleischer, P. Jr., Fleischer, P., Bytnerowicz, A., 2019. The role of environmental factors in ozone uptake of Pinus mugo Turra. Atmospheric Pollution Research, 10: 283–293. https://doi.org/10.1016/j.apr.2018.08.003
  8. Boratyński, A., Jasińska, A., Boratyńska, K., Iszkuło, G., Piorkowska, M., 2009. Life span of needles of Pinus mugo Turra: effect of altitude and species origin. Polish Journal of Ecology, 57: 567–572.
  9. Braun, S., Schindler, C., Rihm, B., 2017. Growth trends of beech and Norway spruce in Switzerland: The role of nitrogen deposition, ozone, mineral nutrition and climate. Science of The Total Environment, 599–600: 637–646. https://doi.org/10.1016/j.scitotenv.2017.04.230.
  10. Büker, P., Morrissey, T., Briolat, A., Falk, R., Simpson, D., Tuovinen, J.-P., Alonso, R., Barth, S., Baumgarten, M., Grulke, N., Karlsson, P.E., King, J., Lagergren, F., Matyssek, R., Nunn, A., Ogaya, R., Peñuelas, J., Rhea, L., Schaub, M., Uddling, J., Werner, W., Emberson, L.D., 2012. DO3SE modelling of soil moisture to determine ozone flux to forest trees. Atmospheric Chemistry and Physics, 12: 5537–5562. https://doi.org/10.5194/acp-12-5537-2012
  11. Bytnerowicz, A., Fenn, M.E., Cisneros, R., Schweizer, D., Burley, J., Schilling, S.L., 2019. Nitrogenous air pollutants and ozone exposure in the central Sierra Nevada and White Mountains of California – Distribution and evaluation of ecological risks. Science of the Total Environment, 654: 604–615. https://doi.org/10.1016/j.scitotenv.2018.11.011
  12. Coulston, J.W., Smith, G.C., Smith, W.D., 2003. Regional assessment of ozone sensitive tree species using bioindicator plants. Environmental Monitoring and Assessment, 83: 113–127. http://doi.org/10.1023/A:1022578506736
  13. Dalstein, L., Ciriani, M.L., 2019. Ozone foliar damage and defoliation monitoring of P. cembra between 2000 and 2016 in the southeast of France. Environmental Pollution, 244: 451–461. https://doi.org/10.1016/j.envpol.2018.10.081
  14. Demidchik, V., Straltsova, D., Medvedev, S., Pozhvanov, G.-A., Sokolik, A., Yurin, V., 2014. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65: 1259–1270. https://doi.org/10.1093/jxb/eru004
  15. Emberson, L.D., Ashmore, M.R., Cambridge, H.M., Simpson, D., Tuovinen, J.P., 2000. Modelling stomatal ozone flux across Europe. Environmental Pollution, 109: 403–413. http://doi.org/10.1016/S0269-7491(00)00043-9
  16. EMEP, 2020. Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. Status Report 1/2020. [online]. [cit. 2022–09–06]. Oslo: Norwegian Meteorological Institute. https://emep.int/publ/reports/2020/EMEP_Status_Report_1_2020.pdf
  17. Escandón, M., Cañal, M.J., Pascual, J., Pinto, G., Correia, B., Amaral, J., Meijón, M., 2016. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiology, 36: 63–77. https://doi.org/10.1093/treephys/tpv127
  18. Fleischer, P., Pichler, V., Fleischer, P. Jr, Holko, L., Máliš, F.G., Gömöryová, E., Cudlín, P., Holeksa, J., Michalková, Z., Homolová, Z., Škvarenina, J., Střelcová, K., Hlaváč, P., 2017. Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Climate Research, 73: 57–71. http://dx.doi.org/10.3354/cr01461
  19. Flint, H.L., Boyce, B.R., Beattie, D.J., 1967. Index of injury—a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Canadian Journal of Plant Sciences, 47: 229–230. https://doi.org/10.4141/cjps67–043
  20. Fornace, K.L., Hughen, K.A., Shanahan, T.M., Fritz, S.C., Baker, P.A., Sylva, S.P., 2014. A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments. Earth and Planetary Science Letters, 408: 263–271. http://doi.org/10.1016/j.epsl.2014.10.024
  21. Freimuth, E.J., Diefendorf, A.F., Lowell, T.V., 2017. Hydrogen isotopes of n-alkanes and n-alkanoic acids as tracers of precipitation in a temperate forest and implications for paleorecords. Geochimica et Cosmochimica Acta, 206: 166–183. http://dx.doi.org/10.1016/j.gca.2017.02.027
  22. Furt, F., Simon-Plas, F., Mongrand, S., 2011. Lipids of the Plant Plasma Membrane. In Murphy, A., Schulz, B., Peer, W. (eds). The plant plasma membrane. Plant Cell Monographs, Volume 19. Berlin: Springer, p. 3–30. https://doi.org/10.1007/978-3-642-13431-9_1
  23. Goh, C.-H., Ko, S.-M., Koh, S., Kim, Y.-J., Bae, H.-J., 2012. Photosynthesis and environments: photoihibition and repair mechanisms in plants. Journal of Plant Biology, 55: 93–101. https://doi.org/10.1007/s12374-011-9195-2
  24. Hůnová, I., Kurfürst, P., Baláková, L., 2019. Areas under high ozone and nitrogen loads are spatially disjunct in Czech forests. Science of The Total Environment, 656: 567–575. https://doi.org/10.1016/j.scitotenv.2018.11.371
  25. ICP, 2014. Examples of ozone damage in trees. [online]. [cit. 2022–07–029]. Bangor: UK Centre for Ecology & Hydrology https://icpvegetation.ceh.ac.uk/
  26. Kopáček, J., Kaňa, J., Bičárová, S., Fernandez, I., Hejzlar, J., Kahounová, M., Norton, S.A., Stuchlík, E., 2017. Climate change increasing calcium and magnesium leaching from granitic Alpine catchments. Environmental Science and Technology, 51: 159–166. https://doi.org/10.1021/acs.est.6b03575
  27. Kormuťák, A., Galgóci, M., Boleček, P., Gömöry, D., 2019. Antioxidant enzyme activity in Pinus mugo Turra, P. sylvestris L. and in their putative hybrids. Biologia, 74: 631–638. https://doi.org/10.2478/s11756-019-00198-y
  28. Koutsaviti, A., Toutoungy, S., Saliba, R., Loupassaki, S., Tzakou, O., Roussis, V., Ioannou, E., 2021. Antioxidant potential of pine needles: a systematic study on the essential oils and extracts of 46 species of the genus Pinus. Foods, 10: 2304–8158. https://doi.org/10.3390/foods10010142
  29. Lee, B., Zhu, J.K., 2010. Phenotypic analysis of Arabidopsis mutants: electrolyte leakage after freezing stress. Cold Spring Harbor Protocols, 2010: pdb.prot4970. https://doi.org/10.1101/pdb.prot4970
  30. Levitt, J. (ed.), 1972. Responses of plants to environmental stresses. New York: Academic Press.
  31. Lichtenthaler, K., 1996. Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 148: 4–14. https://doi.org/10.1016/S0176-1617(96)80287-2
  32. Lukasová, V., Bucha, T., Mareková, Ľ., Buchholcerová, A., Bičárová, S., 2021. Changes in the greenness of mountain pine (Pinus mugo Turra) in the subalpine zone related to the winter climate. Remote Sensing, 13: 1788. https://doi.org/10.3390/rs13091788
  33. Matłok, N., Gorzelany, J., Piechowiak, T., Antos, P., Zardzewiały, M., Balawejder, M., 2020. Impact of ozonation process on the content of bioactive compounds with antioxidant properties in Scots pine (L.) shoots as well as yield and composition of essential oils. Acta Universitatis Cibiniensis. Series E: Food Technology, 24: 146–155. https://doi.org/10.2478/aucft-2020-0013
  34. Mezei, P., Jakuš, R., Pennerstorfer, J., Havašová, M., Škvarenina, J., Ferenčík, J., Slivinský, J., Bičárová, S., Bilčík, D., Blaženec, M., Netherer, S., 2017. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus—An infernal trio in Norway spruce forests of the Central European High Tatra Mountains. Agricultural and Forest Meteorology, 242: 85–95. https://doi.org/10.1016/j.agrformet.2017.04.004.
  35. Munné-Bosch S., 2005. The role of alpha-tocopherol in plant stress tolerance. Journal of Plant Physiology, 162: 743–748. https://doi.org/10.1016/j.jplph.2005.04.022
  36. Neuner, G., Ambach, D., Aichner, K., 1999. Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiology, 19: 725–732. https://doi.org/10.1093/treephys/19.11.725
  37. Nunn, A.J., Wieser, G., Metzger, U., Löw, M., Wipfler, P., Häberle, K.-H., Matyssek, R., 2007. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions. Environmental Pollution, 146: 629–639. https://doi.org/10.1016/j.envpol.2006.06.015
  38. Pennazio, S., Sapetti, C., 1982. Electrolyte leakage in relation to viral and abiotic stresses inducing necrosis in cowpea leaves. Biologia Plantarum, 24: 218–225. https://doi.org/10.1007/BF02883667
  39. Pukacki, P., 2004. The effect of industrial air pollution on membrane lipid composition of Scots pine (Pinus sylvestris L.) needles. Acta Societatis Botanicorum Poloniae, 73: 187–191. http://dx.doi.org/10.5586/asbp.2004.025
  40. Saleem, S., Bari, A., Abid, B., Tahir ul Qamar, M., Atif, R.M., Khan, M.S., 2020. QTL Mapping for abiotic stresses in cereals. In Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Ali Khan, I., Adnan, M. (eds). Environment, climate, plant and vegetation growth. Cham: Springer. 686 p. https://doi.org/10.1007/978-3-030-49732-3_10
  41. SEI, 2014. DO3SE (Deposition of ozone for stomatal exchange). [online]. [cit. 2022–07–15]. Stockholm: Stockholm Environment Institute. https://www.sei-international.org/do3se
  42. Schaub, M., Calatayud, V., Ferretti, M., Brunialti, G., Lövblad, G., Krause, G., Sanz, M.J 2016. Part VIII: Monitoring of ozone injury. In UNECE ICP Forests Programme Co-ordinating Centre (ed.). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems. [online]. [cit.2022-08-25]. 14 p.https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part08.pdf
  43. Sharps, K., Mills, G., Harmens, H., 2014. Have you seen these ozone injury symptoms? [online]. [cit. 2022-08-19]. Bangor: UK Centre for Ecology and Hydrology. https://icpvegetation.ceh.ac.uk/
  44. Sicard, P., De Marco, A., Dalstein-Richier, L., Tagliaferro, F., Renou, C., Paoletti, E., 2016. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests. Science of The Total Environment, 541: 729–741. http://doi.org/10.1016/j.scitotenv.2015.09.113
  45. Sonesson, M., Callaghan, T., 1991. Strategies of survival in plants of the Fennoscandian tundra. [online]. [2022-07-22]. Arctic, 42: 95–105. www.jstor.org/stable/40511069
  46. Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., Inzé, D., Reupold-Popp, P., Sandermann, H. Jr., Langebartels, C., 1994. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Nature Biotechnology, 12: 165–168. https://doi.org/10.1038/nbt0294-165
  47. Walker, D., Billings, W., De Molenaar, J., 2001. Snow-vegetation interactions in tundra environ-ments. In Jones, H., Pomeroy, J., Walker, D., Hoham, R. (eds.). Snow Ecology: an interdisciplinary examination of snow-covered ecosystems. [online]. [cit. 2022-08-25]. Cambridge: Cambridge University Press, p. 266–324. https://www.nhbs.com/snow-ecology-book
  48. Wardle, P., 1981. Winter desiccation of conifer needles simulated by artificial freezing. Arctic and Alpine Research, 13: 419–423.
  49. Yalcinkaya, T., Uzilday, B., Ozgur, R., Turkan, I., Mano, J., 2019. Lipid peroxidation-derived reactive carbonyl species (RCS): their interaction with ROS and cellular redox during environmental stresses. Environmental and Experimental Botany, 165: 139–149. https://doi.org/10.1016/j.envexpbot.2019.06.004
  50. Zapletal, M., Pretel, J., Chroust, P., Cudlín, P., Edwards-Jonášová, M., Urban, O., Pokorný, R., Czerný, R., Hůnová, I., 2012. The influence of climate change on stomatal ozone flux to a mountain Norway spruce forest. Environmental Pollution, 169: 267–273. https://doi.org/10.1016/j.envpol.2012.05.008
DOI: https://doi.org/10.2478/foecol-2023-0001 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 1 - 15
Submitted on: Sep 12, 2022
Accepted on: Nov 7, 2022
Published on: Jan 27, 2023
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Svetlana Bičárová, Veronika Lukasová, Katarína Adamčíková, Lucia Žatková, Rastislav Milovský, Anumol Shashikumar, Jozef Pažitný, Anna Buchholcerová, Dušan Bilčík, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.