Have a personal or library account? Click to login

Geometric Morphometrics use in the examination of subgenus Quercus leaf shape variation in Algeria

Open Access
|Aug 2022

References

  1. Aissi, A., Beghami, Y., Lepais, O. Vela, E., 2021. Analyse morphologique et taxonomique du complexe Quercus faginea (Fagaceae) en Algérie (Morphological and taxonomic analysis of Quercus faginea (Fagaceae) complex in Algeria). Botany, 99: 99–113. https://doi.org/10.1139/cjb-2020-0075
  2. Akli, A., Lorenzo, Z., Alia, R., Rabhi, K., Torres, E., 2022. Morphometric analyses of leaf shapes in four sympatric Mediterranean oaks and hybrids in the Algerian Kabylie forest. Forests, 13, 508: 1–11. https://doi.org/10.3390/f13040508
  3. Albarrán-Lara, A.L., Mendoza-Cuenca, L., ValenciaAlvados, S., Gonzales-Rodríguez, A., Oyama, K., 2010. Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. International Journal of Plant Sciences, 171: 310–322. https://doi.org/10.1086/650317
  4. Blackith, R., Reyment, R.A. (eds), 1971. Multivariate morphometrics. New York: Academic Press. 412 p.
  5. Bookstein, F.L., 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science, 1: 181–222. https://www.jstor.org/stable/224544110.1214/ss/1177013696
  6. Bookstein, F.L., 1996. Combining the tools of Geometric Morphometrics. In Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E. (eds). Advances in morphometrics. NATO ASI Series, Series A, Life Sciences, v. 284. Boston: Springer, p. 131–151. https://doiorg/10.1007/978-1-4757-9083-2_1210.1007/978-1-4757-9083-2_12
  7. Bruschi, P., Vendramin, G.G., Bussotti, F., Grossoni, P., 2000. Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy. Annals of Botany, 85: 325–333. https://doi.org/10.1006/anbo.1999.1046
  8. Camus, A., 1938. Les Chênes : Monographie du genre Quercus. Volume 2. Atlas [Oaks: monograph of the genus Quercus. Volume 2. Atlas]. Paris: Paul Lechevalier & Fils. 830 p.
  9. Corcuera, L., Camarero, J.J., Gil-Pelegrín, E., 2002. Functional groups in Quercus species derived from the analysis of pressure-volume curves. Trees, 16: 465–472. https://doi.org/10.1007/s00468-002-0187-1
  10. Dean, C., Adams, F., Rohlf, J., Dennis, E.S., 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71: 5–16. https://doi.org/10.1080/11250000409356545
  11. Dryden, I.L., Mardia, K.V., 1998. Statistical shape analysis. Chichester, UK: John Wiley and Sons.
  12. Gil-Pelegrín, E., Ángel, S.M., María, C.J., Peguero-Pina, J.J., Sancho-Knapik, D., 2017. Oaks under Mediterranean-type climates: functional response to summer aridity. In Gil-Pelegrín, E., Peguero-Pina, J.J., & SanchoKnapik, D. (eds). Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. Volume 7. Spain: Springer International Publishing, 2017, p. 137–177. https://doi.org/10.1007/978-3-319-69099-5_5
  13. Hardin, J.W., 1979. Patterns of variation in foliar trichomes of eastern North American Quercus. American Journal of Botany, 66: 576–585. https://doi.org/10.1002/j.1537-2197.1979.tb06260.x
  14. He, Y., LI, N., Wang, Z., Wang, H., Yang, G., Xiao, L., Wu, J., Sun, B., 2014. Quercus yangyiensis sp. nov. from the Late Pliocene of Baoshan, Yunnan and its paleoclimatic significance. Acta Geologica Sinica, 88: 738–747. https://doi.org/10.1111/1755-6724.12234
  15. Jensen, R.J., 1990. Detecting shape variation in oak leaf morphology: a comparison of rotational-fit methods. American Journal of Botany, 77: 1279–1293. https://doi.org/10.2307/2444589
  16. Jensen, R.J., Hokanson, S.C., Isebrands, J.G., Hancock, J.F., 1993. Morphometric variation in oaks of the Apostle Islands in Wisconsin: evidence of hybridization between Quercus rubra and Q. ellipsoidalis (Fagaceae). American Journal of Botany, 80: 1358–1366. https://doi.org/10.1002/j.1537-2197.1993.tb15375.x
  17. Kendall, D.G., 1989. A survey of the Statistical Theory of Shape. Statistical Science, 4: 116–120. https://doi.org/10.1214/ss/1177012589
  18. Klingenberg, C.P., Monteiro, L.R., 2005. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology, 54: 678–688. https://doi.org/10.1080/1063515059094725816126663
  19. Klingenberg, C.P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x21429143
  20. Kremer, A., Dupouey J.L.J., Deans, D., Cottrell, J., Csaikl, U., Finkeldey, R., Espinel, S., Jensen, J., Kleinschmit, J., Barbara, V.D., Ducousso, A., Forrest, I., de-Heredia, U.L., Lowe, A.J., Tutkova, M., Munro, R.C., Badeau, S.S.V., 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Science, 59: 777–787. https://doi.org/10.1051/forest:2002065
  21. Lepais, O., Aissi, A., Véla, E., Beghami, Y., 2022. Joint analysis of microsatellites and flanking sequences enlightens complex demographic history of interspecific gene flow and vicariance in rear-edge oak populations. Heredity. https://doi.org/10.1101/2021.07.12.452011
  22. Liu, Y., Li, Y., Song, J., Zhang, R., Yan, Y., Wang, Y., Du, F.K., 2018. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae). Annals of Forest Science, 75: 90. https://doi.org/10.1007/s13595-018-0770-2
  23. Maire, R., 1961. Flore de l’Afrique du Nord. Volume 7. Paris, France: Paul Lechevalier & Fils, p. 97–105.
  24. McDonald, P.G., Fonseca, C.R., Overton, J.M., Westoby, M., 2003. Leaf-size divergence along rainfall and soilnutrient gradients: is the method of size reduction common among clades? Functionnal Ecology, 17: 50–57. https://doi.org/10.1046/j.1365-2436.2003.00698.x
  25. Mohebi Bijarpasi, M., Rostami Shahraji, T., Samizadeh Lahiji, H., 2019. Genetic variability and heritability of some morphological and physiological traits in Fagus orientalis Lipsky along an elevation gradient in Hyrcanian forests. Folia Oecologica, 46: 45–53. https://doi.org/10.2478/foecol-2019-0007
  26. Peguero-Pina, J.J., Sisó, S., Sancho-Knapik, D., Díaz-Espejo, A., Flexas, J., Galmés, J., Gil-Pelegrín, E., 2016. Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.). Tree Physiology, 36: 287–299. https://doi.org/10.1093/treephys/tpv107
  27. Peñaloza-Ramírez, J.M., Gonzáles-Rodríguez, A., Mendoza -Cuenca, L., Caron, H., Kremer, A., Oyama, K., 2010. Interspecific gene flow in a multispecies oak hybrid zone in the Sierra Tarahumara of Mexico. Annals of Botany, 105: 389–399. https://doi.org/10.1093/aob/mcp301
  28. Rohlf, F.J., Marcus, L.F., 1993. A revolution morphometrics. Trends in Ecology and Evolution, 8: 129–132. https://doi.org/10.1016/0169-5347(93)90024-J
  29. Rohlf, J., 1999. Shape Statistics: Procrustes superimpositions and tangent spaces. Journal of Classification, 16: 197–223. https://doi.org/10.1007/s003579900054
  30. Schimper, A.F.W., 1903. Plant-geography upon a physiological basis. Oxford, UK: Clarendon Press. https://doi.org/10.5962/bhl.title.8099
  31. TPS software series, Morphometrics at SUNY Stony Brook, 2016. [cit. 2016-12-26]. https://life.bio.synsb.edu/morpho/
  32. Trabut, L., 1892. Sur les variations du Quercus Mirbeckii. Durieu en Algérie [About Quercus Mirbeckii. Durieu variations in Algeria]. Revue Générale de Botanique, 4: 1–6.
  33. Tschan, G.F., Denk, T., 2012. Trichome types, foliar indumentum and epicuticular wax in the Mediterranean gall oaks, Quercus subsection Galliferae (Fagaceae): implications for taxonomy, ecology and evolution. Botanical Journal of Linnean Society, 169: 611–644. https://doi.org/10.1111/j.1095-8339.2012.01233.x
  34. Viscosi, V., Fortini, P., Slice, D.E., Loy, A., Blasi, C., 2009a. Geometric morphometric analyses of leaf variation in four oak species of subgenus Quercus (Fagaceae). Plant Biosystems, 143: 575–587. https://doi.org/10.1080/11263500902775277
  35. Viscosi, V., Lepais, O., Gerber, S., Fortini, P., 2009b. Leaf morphological analysis in four European oak species (Quercus) and their hybrids: a comparison of traditional and new morphometric methods. Plant Biosystems, 143: 564–574. https://doi.org/10.1080/11263500902723129
  36. Viscosi, V., Loy, A., Fortini, P., 2010. Geometric morphometric analysis as a tool to explore covariation between shape and other quantitative leaf traits in European white oaks. In Nimis, P.l., Vigines, L.R. (eds). Tools for identifying biodiversity: progress and problems. Trieste, Italy: EUT Edizioni Università di Trieste, 2010, p. 257–261.
  37. Viscosi, V., Cardini, A., 2012. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PloS One, 7: 1–20. https://doi.org/10.1371/annotation/bc347abe-8d03-4553-8754-83f41a9d51ae
  38. Viscosi, V., 2015. Geometric morphometrics and leaf phenotypic plasticity: assessing fluctuating asymmetry and allometry in European white oaks (Quercus). Botanical Journal of Linnean Society, 179: 335–348. https://doi.org/10.1111/boj.12323
DOI: https://doi.org/10.2478/foecol-2022-0020 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 175 - 181
Submitted on: Jan 10, 2022
Accepted on: Jun 5, 2022
Published on: Aug 5, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Abdeldjalil Aissi, Yassine Beghami, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.