Algera, M., Kätsch, C., Chirwa, P.W., 2019. Developing a taper model for the Pinus elliottii x P. caribaea var. hondurensis hybrid in South Africa. Southern Forests: a Journal of Forest Science, 81: 141–150. https://doi.org/10.2989/20702620.2018.1520027
Barna, M., Ferezliev, A., Tsakov, H., Mihál, I., 2020. Investigations of mature Scots pine stands in windthrow areas in Norway spruce forests in Western Rhodopes. Folia Oecologica, 47: 1–9. doi: 10.2478/foecol-2020-0001
Bayat, M., Bettinger, P., Heidari, S., Henareh Khalyani, A., Jourgholami, M., Hamidi, S.K, 2020. Estimation of tree heights in an uneven-aged, mixed forest in northern Iran using artificial intelligence and empirical models. Forests, 11 (3): 324. https://doi.org/10.3390/f11030324
Bi, H., Hamilton, F., 1998. Stem volume equations for native tree species in southern New South Wales and Victoria. Australian Forestry, 61 (4): 275–286. https://doi.org/10.1080/00049158.1998.10674752
Boroughani, M., Soltani, S., Ghezelseflu, N., Pazhouhan, I., 2022. A comparative assessment between artificial neural network, neuro-fuzzy, and support vector machine models in splash erosion modelling under simulation circumstances. Folia Oecologica, 49 (1): 23–34. https://doi.org/10.2478/foecol-2022-0003
Cutler, A., Cutler, D.R., Stevens, J.R., 2012. Random forests. In Zhang, C., Ma, Y.Q. (eds). Ensemble machine learning. New York: Springer, 2015, p. 157–175. http://dx.doi.org/10.1007/978-1-4419-9326-7_510.1007/978-1-4419-9326-7_5
Diamantopoulou, M.J., 2005. Artificial neural networks as an alternative tool in pine bark volume estimation. Computers and Electronics in Agriculture, 48: 235–244. https://doi.org/10.1016/j.compag.2005.04.002
Diamantopoulou, M.J., Milios, E., Doganos, D., Bistinas, I., 2009. Artificial neural network modeling for reforestation design through the dominant trees bolevolume estimation. Natural Resource Modeling, 22: 511–543. https://doi.org/10.1111/j.1939-7445.2009.00051.x
Diamantopoulou, M.J., Özçelik, R., Yavuz, H., 2018. Treebark volume prediction via machine learning: a case study based on black alder’s tree-bark production. Computers and Electronics in Agriculture, 151: 431–440. https://doi.org/10.1016/j.compag.2018.06.039
Güner, S.T., Diamantopoulou, M.J., Poudel, K.P., Çömez, A., Özçelik, R., 2022. Employing artificial neural network for effective biomass prediction: an alternative approach. Computers and Electronics in Agriculture, 192: 106596. https://doi.org/10.1016/j.compag.2021.106596
Hastie, T., Tibshirani, R., Friedman, J., 2017. The elements of statistical learning data mining, inference, and prediction. 2nd ed. New York: Springer. 764 p.
Hoaglin, D.C., Mosteller, F., Tukey, J.W., 2006. Exploring data tables, trends and shapes. New York: John Wiley and Sons Inc. 538 p.10.1002/9781118150702
Leite, H.G., Da Silva, M.L.M., Binoti, D.H.B., Fardin, L., Takizawa, F.H., 2011. Estimation of inside-bark diameter and heartwood diameter for Tectona grandis Linn. trees using artificial neural networks. European Journal of Forest Research, 130: 263–269. https://doi.org/10.1007/s10342-010-0427-7
Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. Journal of the American Statistical Association 62: 399–402. https://doi.org/10.2307/2283970
Koulelis, P.P., Ioannidis, K., 2021. Constructing single-entry stem volume models for four economically important tree species of Greece. Folia Oecologica, 48 (2): 136–146. https://doi.org/10.2478/foecol-2021-0014
Marchi, M., Scotti, R., Rinaldini, G., Cantiani, P., 2020. Taper function for Pinus nigra in central Italy: Is a more complex computational system required? Forests, 11: 405. https://doi.org/10.3390/f11040405
Meng, C.H., Tsai, W.Y., 1986. Selection of weights for a weighted regression of tree volume. Canadian Journal of Forest Research, 16 (3): 671–673. https://doi.org/10.1139/x86-118
Moore, J.A., Zhang, L., Stuck, D., 1996. Height-diameter equations for ten tree species in the Inland Northwest. Western Journal of Applied Forestry, 11: 132–137. https://doi.org/10.1093/wjaf/11.4.132
Nicoletti, M.F., Carvalho, S.D.P.C., Do Amaral Machado, S., Costa, V.J., Silva, C.A., Topanotti, L.R., 2020. Bivariate and generalized models for taper stem representation and assortments production of loblolly pine (Pinus taeda L.). Journal of Environmental Management, 270:110865.https://doi.org/10.1016/j.jenvman.2020.11086532721311
Özçelik, R., Karatepe, Y., Gürlevik, N., Cañellas, I., Crecente-Campo, F., 2016. Development of ecoregion-based merchantable volume systems for Pinus brutia Ten. and Pinus nigra Arnold. in southern Turkey. Journal of Forestry Research, 27: 101–117. https://doi.org/10.1007/s11676-015-0147-4
Özçelik, R., Diamantopoulou, M.J., Trincado, G., 2019. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey. Computers and Electronics in Agriculture, 162: 773–782. https://doi.org/10.1016/j.compag.2019.05.033
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12: 2825–2830.
Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer classification and regression techniques: bagging and random forests for ecological prediction. Ecosystems, 9: 181–199. https://doi.org/10.1007/s10021-005-0054-1
Salekin, S., Catalan, C.H., Boczniewicz, D., Phiri, D., Morgenroth, J., Meason, D.F., Mason, E.G., 2021. Global tree taper modelling: a review of applications, methods, functions, and their parameters. Forests, 12: 913. https://doi.org/10.3390/f12070913
Segal, M.R., 2003. Machine learning benchmarks and random forest regression. San Francisco: Center for Bioinformatics and Molecular Biostatistics, University of California. [cit.2022-01-09]. https://escholarship.org/uc/item/35x3v9t4