Have a personal or library account? Click to login
The cytogenetic parameters of Pinus sylvestris L. under conditions of the Far North of Russia (Karelia) Cover

The cytogenetic parameters of Pinus sylvestris L. under conditions of the Far North of Russia (Karelia)

Open Access
|Dec 2021

References

  1. Atlas Karel’skoi ASSR, 1989. [Atlas of the Karelian ASSR]. Moscow: GUGK. 40 p.
  2. Butorina, A.K., Cherckashina, O.N., Ermolaeva, O.V., Chernodubov, A.I., Avdeeva, I.A., 2007. Cytogenetic monitoring of the Usmansky and Khrenovskoyautochtonic pine stands. Biology Bulletin, 34 (4): 423–426. https://doi.org/10.1134/s106235900704015210.1134/S1062359007040152
  3. Butorina, A.K., Ermolaeva, O.V., Cherkashina, O.N., Mazurova, I.E., Belousov, M.V., Chernodubov A.I., 2008. Perspektivy ispol’zovaniya tsitogeneticheskogo analiza v lesovodstve na primere otsenki sostoyaniya ostrovnykh borov Voronezhskoi oblasti [Perspectives of using the cytogenetic analysis in forestry from the example of assessment of state of island pine forests (Voronezh region)]. Biology Bulletin Reviews, 128 (4): 400–408.
  4. Butorina, A.K., Kalaev, V.N., 2000. Analysis of sensitivity of different criteria in cytogenetic monitoring. Russian Journal of Ecology, 3: 186–189. https://doi.org/10.1007/bf0276281910.1007/BF02762819
  5. Butorina, A.K., Kalaev, V.N., Mironov, A.N., Smorodinova, V.A., Mazurova, I.E., Doroshev, S.A., Senkevich, E.V., 2001. Cytogenetic variation in populations of Scotch pine. Russian Journal of Ecology, 3: 198–202. https://doi.org/10.1023/a:101136632880910.1023/A:1011366328809
  6. Butorina, A.K., Muraya, L.S., Isakov, Iu.N., 1979. Spontannyi mutagenez u sosny obyknovennoi (Pinus silvestris L.). Pervyi sluchai obnaruzheniya mutanta s kol’tsevoi i dobavochnoi khromosomami [Spontaneous mutagenesis in Scots pine (Pinus silvestris L.). First case of the detection of a mutant with ring and supernumerary chromosomes]. Reports of the Academy of Sciences, 248 (4): 977–979.
  7. Carvalho, A., Gaivao, I., Lima-Brito, J., 2020. Seed osmopriming with PEG solutions in seeds of three infraspecific taxa of Pinus nigra: Impacts on germination, mitosis and nuclear DNA. Forest Ecology and Management, 456: 117739. https://doi.org/10.1016/j.foreco.2019.11773910.1016/j.foreco.2019.117739
  8. Carvalho, A., Leal, F., Matos, M., Lima-Brito, J., 2018. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties. Protoplasma, 255: 1725–1740. https://doi.org/10.1007/s00709-018-1267-410.1007/s00709-018-1267-4
  9. Daev, E.V., Dukelskaya, A.V., Barabanova, L.V., 2015. Cytogenetic approaches for determining ecological stress in aquatic and terrestrial biosystems. Russian Journal of Genetics: Applied Research, 5 (5): 441–448. https://doi.org/10.1134/s207905971505005610.1134/S2079059715050056
  10. Ehkologicheskii monitoring. Metody biologicheskogo monitoringa. Chast’ 2 [Ecological monitoring. Methods of biological monitoring. Part 2]. Nizhny Novgorod: NNGU. 1995. 272 p.
  11. Geraskin, S.A., Kuzmenkov, A.G., Vasiliyev D.V., 2018. Vremennaya dinamika tsitogeneticheskikh effektov v khronicheski obluchaemykh populyatsiyakh sosny obyknovennoi [Time dynamics of cytogenetic effects in chronically exposed Scots Pine populations]. Radiation Biology. Radioecology, 58 (1): 74–84. https://doi.org/10.7868/s086980311801008310.7868/S0869803118010083
  12. Geraskin, S.A., Ziminal.M., Dikarev, V.G., Vasiliyev, D.V., Oudalova, A.A., Alexakhin, R.M., Zimina, L.M., Zimin, V. L., Blinova, L.D., 2003. Bioindication of the anthropogenic effects on micropopulation of Pinus sylvestris L. in the vicinity of a plant for the storage and processing of radioactive waste and in the Chernobyl NPP zone. Journal of Environmental Radioactivity, 66 (1-2): 171–180. https://doi.org/10.1016/s0265-931x(02)00122-410.1016/S0265-931X(02)00122-4
  13. Goryachkina, O.V., Sizykh, O.A., 2012. Tsitogeneticheskie reaktsii khvoinykh rastenii v antropogenno-narushennykh raionakh g. Krasnoyarska i ego okrestnostei [Cytogenetic reactions of coniferous plants in anthropogenic disturbed areas of Krasnoyarsk and its environs]. Conifers of the Boreal Zone, 1-2: 46–51.
  14. Gromtsev, A.N., Petrov, N.V., 2016. Naibolee uyazvimye lesa severo-zapada taezhnoi zony Rossii: landshaftnye osobennosti, sovremennoe sostoyanie, sokhranenie [Most vulnerable forests of Russia’s north-western boreal zone: Landscape characteristics, present day condition, conservation]. Proceedings of the Saint Petersburg Forestry Research Institute, 2: 4–16. https://doi.org/10.21178/2079-6080.2016.2.410.21178/2079-6080.2016.2.4
  15. Hizume, M., Kishimoto, K., Tominaga, K., Tanaka, A., 1988. Presence of B-chromosome in Picea glehnii (Pinaceae). Kromosomo, 2 (51-52): 1715–1720.
  16. Ilinskikh, N.N., Ilinskikh, I.N. Nekrasov, V.N., 1988. Ispol’zovanie mikroyadernogo testa v skrininge i monitoringe mutagenov [Use of micronucleus test in screening and monitoring of mutagens]. Cytology and Genetics, 22 (1): 67–72.
  17. Ilinskikh, N.N., Ilinskikh, V.V., Vanchugova, N.N., Ilinskikh, I. N., 1992. Mikroyadernyi analiz i tsitogeneticheskaya nestabil’nosv’ [Micronuclear analysis and cytogenetic instability]. Tomsk: Tomsk State University. 269 p.
  18. Ivanter, E.V., Korosov, A.V., 2011. Vvedenie v kolichestvennuyu biologiyu [Introduction to quantitative biology]. Petrozavodsk: Petrozavodsk State University. 302 p.
  19. Kalaev, V.N., 2009. Tsitogeneticheskie reaktsii listvennykh drevesnykh rastenii na stressovye usloviya i perspektivy ikh ispol’zovaniya dlya otsenki genotoksichnosti okruzhayushchei sredy [Cytogenetic reactions of deciduous woody plants to stress conditions and prospects for their use to assess the genotoxicity of the environment]. PhD thesis. Voronezh: Voronezh State University. 47 p.
  20. Kalashnik, N.A., 2008. Chromosome aberrations as indicator of technogenic impact on conifer stands. Russian Journal of Ecology, 39 (4): 261–271. https://doi.org/10.1134/s106741360804005x10.1134/S106741360804005X
  21. Kunakh, V.A., 1995. Genome variability in plant somatic cells. 2. Natural variability. Biopolymers and Cell, 11 (6): 5–40. https://doi.org/10.7124/bc.00040010.7124/bc.000400
  22. Kunakh, V. A., 2011. Plastichnost’ genoma somaticheskikh kletok i adaptivnost’ rastenii [Genome plasticity of somatic cells and plant adaptability]. Molecular and Applied Genetics, 12 (8): 8–14.
  23. Kvitko, O.V., Muratova, E.N., Bazhina E.V., 2011. Cytogenetics of Abies sibirica in decline fir stands of west Sayan High Mountains. Contemporary Problems of Ecology, 4 (6): 641–646. https://doi.org/10.1134/s199542551106012910.1134/S1995425511060129
  24. Mashkina, E.V., Kalayev, V.N., Muraya, L.S., Lelikova, E.S., 2009. Tsitogeneticheskie reaktsii semennogo potomstva sosny obyknovennoi na kombinirovannoe antropogennoe zagryaznenie v raione Novolipetskogo metallurgicheskogo kombinata [Cytogenetic response of seed progeny of Scots pine to combined anthropogenic pollution in the area of Novolipetsk metallurgical combine]. Ecological Genetics, 3: 17–29. https://doi.org/10.17816/ecogen7317-2910.17816/ecogen7317-29
  25. Mashkina, O.S., Tikhonova, I.V., Muratova, E.N., Muraya, L.S., 2012. Tsitogeneticheskie osobennosti semennogo potomstva karlikovykh sosen na Yuge Vostochnoi Sibiri [Cytogenetic features of seed progeny of dwarf pines in the South of Eastern Siberia]. Conifers of the Boreal Zone, 1-2: 127–135.
  26. Muratova, E.N., Sedelnikova, T.S., 2004. Genomic and chromosomal mutations in Scots pine (Pinus sylvestris L.) growing in extreme conditions. Conifers of the Boreal Zone, 22 (1-2): 128–140.
  27. Nemtseva, L.S., 1970. Metafaznyi metod ucheta perestroek khromosom [Metaphase chromosome rearrangements accounting method]. Mokva: Nauka. 124 p.
  28. Pardayeva, E.U., Mashkina, O.S., Popov, V.N., 2017. State of Pinus sylvestris L. generative sphere according to cytogenetic analysis in changing climate conditions on the territory of Voronezh oblast. Contemporary Problems of Ecology, 3: 271–276. https://doi.org/10.1134/s199542551703008810.1134/S1995425517030088
  29. Pravdin, L.F., Budaragin, V.A., Kruklis, M.V., Shershukova, O.P., 1972. Metodika kariologicheskogo izucheniya khvoinykh porod [Methods of karyoiogic investigation of Conifers]. Lesovedenie, 2: 67–75.
  30. Prus-Głowacki, W., Chudzińska, E., Wojnicka-Półtorak, A., Kozacki, L., Fagiewicz, K., 2006. Effects of heavy metal pollution on genetic variation and cytological disturbances in the Pinus sylvestris L. population. Journal of Applied Genetics, 47(2): 99–108. https://doi.org/10.1007/BF0319460710.1007/BF0319460716682749
  31. Pukhalskiy, V.A., Solovev, A.A., Badaeva, E.D., Yurtsev, V.N., 2007. Praktikum po tsitologii i tsitogenetike rastenii [Practicum on plant cytology and cytogenetics]. Moscow: Kolos. 198 p.
  32. Reis, S., Pavia, I., Carvalho, A., Moutinho-Pereira, J., Correia, C., Lima-Brito, J., 2018. Seed priming with iron and zinc in bread wheat: Effects in germination, mitosis and grain yield. Protoplasma, 255: 1179–1194. https://doi.org/10.1007/s00709-018-1222-410.1007/s00709-018-1222-429453498
  33. Sedelnikova, T.S., Muratova, E.N., Pimenov, A.V., 2010. Variability of chromosome numbers in gymnosperms. Biology Bulletin Reviews, 1 (2): 100–109. https://doi.org/10.1134/s207908641102008310.1134/S2079086411020083
  34. Sluchyk, V., Sluchyk, I., Shyichuk, A., 2014. Assessment of both environmental cytotoxicity and trace metal pollution using Populus simonii Carr. as a bioindicator. Environmental Monitoring and Assessment, 186 (10): 6645–6650. https://doi.org/10.1007/s10661-014-3879-210.1007/s10661-014-3879-224942519
  35. Stimpson, K.M., Matheny, J.E., Sullivan, B.A., 2012. Dicentric chromosomes: Unique models to study centromere function and inactivation. Chromosome Research, 20: 595–605. https://doi.org/10.1007/s10577-012-9302-310.1007/s10577-012-9302-3355791522801777
  36. Teoh, S.B., Rees, H., 1977. B-chromosomes in White spruce. Proceeding of the Royal Society, 198 (1133): 325–344. https://doi.org/10.1098/rspb.1977.010110.1098/rspb.1977.0101
  37. Tsvetkov, P.A., 2006. Issledovanie prirody pozharov v severnoi taige srednei Sibiri [Investigation of the nature of fires in the northern taiga of Central Siberia]. Conifers of the Boreal Zone, 23 (2): 186–195.
  38. Tsvetkov, V.F., Brovina, A.N., 2017. Challenges of forestry in Subarctic European Russia. Russian Journal of Forest Science, 4: 284–292. https://doi.org/10.7868/S002411481704004010.7868/S0024114817040040
  39. Vladimirova, O.S., Muratova, E.N., 2005. Kariologicheskie osobennosti eli sibirskoi (Picea obovata Ledeb.) v usloviyakh antropogennogo zagryazneniya g. Krasnoyarska [Karyological features of Siberian spruce (Picea obovata Ledeb.) under anthropogenic contamination conditions of Krasnoyarsk]. Ecological Genetics, 3 (1): 18–23. https://doi.org/10.17816/ecogen3118-2310.17816/ecogen3118-23
DOI: https://doi.org/10.2478/foecol-2022-0007 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 61 - 69
Submitted on: Jul 23, 2021
Accepted on: Oct 27, 2021
Published on: Dec 30, 2021
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Roman Viktorovich Ignatenko, Lyubov Alexandrovna Efimova, Ksenia Mikhailovna Nikerova, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.