Have a personal or library account? Click to login
Ecogenesis and primary soil formation on the East European Plain. A review Cover

Ecogenesis and primary soil formation on the East European Plain. A review

Open Access
|Dec 2021

References

  1. Abakumov, E., Trubetskoj, O., Demin, D., Celi, L., Cerli, C., Trubetskaya, O., 2010. Humic acid characteristics in podzol soil chronosequence. Chemistry and Ecology, 26 (S2): 59–66. https://doi.org/10.1080/02757540.2010.497758t
  2. Aleksandrovskiy, A.L., 2002. Razvitiye pochv Vostochnoy Yevropy v golotsene. Avtoreferat dissertacii na soiskanie uchenoj stepeni doktora geograficheskikh nauk [The development of Eastern European soils in the Holocene. Dr. Sci. Geogr. thesis abstract]. Moscow: Institute of Georgaphy. 48 p.
  3. Androkhanov, V., Kulyapina, E., Kurachev, V., 2004. Soils of technogenic landscapes: genesis and evolution. Novosibirsk: Publishing house of the SB RAS. 149 p.
  4. Archegova, I., 2007. Thermal regime of tundra soils under reclamation and restoration of natural vegetation. Eurasian Soil Science, 40 (8): 854–859. https://doi.org/10.1134/S106422930708007810.1134/S1064229307080078
  5. Archegova, I.B., 1992. About humus in connection with an unconventional understanding of the soil. Pochvovedenie, 1: 58–64.
  6. Archegova, I.B., 2009. Soil formation during the regenerative succession of forest ecosystems in the North. Sibirskiĭ Ekologicheskiĭ Zhurnal, 1: 91–98.
  7. Chertov, O.G., 1983. Mathematical model of the ecosystem of a single plant. Zhurnal Obshcheĭ Biologii, 44: 406–414.
  8. Clements, F.E., 1916. Plant succession: An analysis of the development of vegetation. Carnegie Institution of Washington Publication, No. 242. Washington: Carnegie Institution of Washington. 512 p. https://doi.org/10.5962/bhl.title.5623410.5962/bhl.title.56234
  9. Dokuchaev, V.V., 1949. Izbrannyye trudy [Selected essays]. Moskow: Selkhozgiz. 647 p.
  10. Egli, M., Fitze, P., Mirabella, A., 2001. Weathering and evolution of soils formed on granitic, glacial deposits: Results from chronosequences of Swiss alpine environments. Catena, 45 (1): 19–47. https://doi.org/10.1016/S0341-8162(01)00138-210.1016/S0341-8162(01)00138-2
  11. Egorov, A. A., Koptseva, E. M., Sumina, O. I., Fatianova, E. V., Kirillov, P. S., Ivanov, S. A., Trofimuk, L. P., 2019. Long-term biodiversity monitoring of the spontaneous successions for the assessment of the artificial restoration progress on the quarries in Russian Arctic. Earth and Environmental Science, 263: 1–8. https://doi.org/10.1088/1755-1315/263/1/01200210.1088/1755-1315/263/1/012002
  12. Emmer, I. M., 1995. Humus form and soil development during a primary succession of monoculture Pinus sylvestris forests on poor sandy substrates. PhD thesis. Amsterdam: University of Amsterdam. 135 p.
  13. Ewald, E.O., 1972. O vzaimootnoshenii issledovaniĭ v oblasti genezisa i ekologii pochv (na primere izucheniya organicheskogo veshchestva [About relationship in investigation in field of genesis and ecology of soils (on example of soil organic matter)]. Soviet Soil Science, 2: 22–28.
  14. FAO, 2019. Soil erosion: the greatest challenge to sustainable soil management. Rome. 100 p.
  15. Frouz, J. (eds), 2013. Soil biota and ecosystem development in post mining sites. Boca Raton: CRC Press. 316 р. https://doi.org/10.1201/b1550210.1201/b15502
  16. Furyev, V., 1996. Rol’ pozharov v protsesse lesoobrazovaniya [The role of fires in the process of forest formation]. Novosibirsk: Nauka. 248 p.
  17. Gadzhiev, I.M., Kurachev, V.M., Androkhanov, V.A., 2001. Strategiya i perspektivy resheniya problem rekul’tivatsii narushennykh zemel [Strategy and prospects for solving the problems of disturbed land restoration]. Novosibirsk: TsERIS. 37 p.
  18. Ganjegunte, G., Wick, A., Stahl, P., Vance, G., 2009. Accumulation and composition of total organic carbon in reclaimed coal mine lands. Land Degradation & Development, 20 (2): 156–175. https://doi.org/10.1002/ldr.88910.1002/ldr.889
  19. Gennadiev, A.N., 1990. Pochvy i vremya: modeli razvitiya [Soils and time: formation models]. Moscow: Izd–vo Moskovskogo universiteta. 232 p.
  20. Gorbunova, A.O., Sumina, O.I., 2021. Dinamika mikorizoobrazovaniya u nekotorykh vidov rasteniy v khode vosstanovitel’noy suktsessii na peschanykh kar’yerakh (Leningradskaya oblast’) [Dynamics of mycorrhizal formation in some plant species during recovery succession in sand quarries (Leningrad region)]. Botanicheskiĭ Zhurnal, 1 (106): 22–42.
  21. Goryachkin, S.V., Mergelov, N.S., Targulian, V.O., 2019. Extreme pedology: elements of theory and methodological approaches. Eurasian Soil Science, 52 (1): 1–13. https://doi.org/10.1134/S106422931901004610.1134/S1064229319010046
  22. Ivanov, I.V.A., Alexandrovskiy A.L., 1987. Metody izucheniya evolyutsii pochv [Methods for studying the evolution of soils]. Pochvovedenie, 1: 112–119.
  23. Kapelkina, L., Sumina, O., Lavrinenko, I., Lavrineneko, O., Tikhmenev, E., Mironova, S., 2014. Samozarastaniye narushennykh zemel’ Severa [Natural revegetation on disturbed lands of the North]. St. Petersburg: VVM Press. 204 p.
  24. Khitrov, N., 2008. An approach for a retrospective assessment of soil changes. Eurasian Soil Science, 41 (8): 793–804. https://doi.org/10.1134/S106422930808001210.1134/S1064229308080012
  25. Komarov, A.S., 2009. Models of plant succession and soil dynamics at climate changes. Computer Research and Modeling, 1 (4): 405–413. https://doi.org/10.20537/2076-7633-2009-1-4-405-41310.20537/2076-7633-2009-1-4-405-413
  26. Kostychev P.A., 1937. Pochvy chernozomnoy oblasti Rossii: ikh proiskhozhdeniye, sostav i svoystva [Soils of the chernozem region of Russia: their origin, composition and properties]. Moskow: Selkhozgiz. 240 p.
  27. Koptseva, E.M., 2012. Vegetation cover of sand dunes at the mouth of the Voronya River (Murmansk coast of the Barents Sea). Izvestiya Samarskogo Nauchnogo Tsentra RAN, 14 (1(5)): 1276–1280.
  28. Kovda, V.A., 1973. Osnovy ucheniya o pochvakh. Obshchaya teoriya pochvoobrazovatel’nogo protsessa [Fundamentals of the doctrine of soils. General theory of the soil-forming process]. Moskva: Nauka. 447 p.
  29. Levchenko, V. F., Skorobogatov, Y.I., 2014. Succession changes and ecosystem evolution (some questions of evolutionary ecology). Russkiĭ Ornitologicheskiĭ Zhurnal, 1068: 3533–3550.
  30. Makhonina, G. I., 2004. Nachal’nyye protsessy pochvoobrazovaniya v tekhnogennykh ekosistemakh Urala. Avtoreferat dissertacii na soiskanie uchenoj stepeni doktora biologicheskikh nauk [Initial processes of soil formation in technogenic ecosystems of the Urals. Dr. Sci. Biol. thesis abstract]. Tomsk: Ural State University, Ekaterinburg. 38 p.
  31. Matchavariani, L., 2019. soil-forming factors. The Soils of Georgia. Springer: Berlin/Heidelberg, Germany. https://doi.org/10.1007/978-3-030-18509-1_310.1007/978-3-030-18509-1_3
  32. Mehdiyev, H.G., 2021. Mineralogical and microbiological diagnostics of primary soil formation in the conditions of gray-earth soils of the semidesert zone of the middle part of the Nakhichevan Autonomous Republic. Problemy Nauki, 5(64): 29–-37.
  33. Mokma, D.L., Yli–Halla, M., Lindqvist, K., 2004. Podzol formation in sandy soils of Finland. Geoderma, 120 (3–4): 259–272. https://doi.org/10.1016/j.geoderma.2003.09.00810.1016/j.geoderma.2003.09.008
  34. Nyberg, G., Bargués Tobella, A., Kinyangi, J., Ilstedt, U., 2012. Soil property changes over a 120-yr chronosequence from forest to agriculture in western Kenya. Hydrology and Earth System Sciences, 16 (7): 2085–2094. https://doi.org/10.5194/hess-16-2085-201210.5194/hess-16-2085-2012
  35. Ponomareva, V., Plotnikova, T., 1980. Gumus i pochvoobrazovaniye [Humus and soil formation]. Leningrad: Nauka. 222 p.
  36. Popov, A.I., 2012. The soil – plant trophosystem is the basis for the functioning of the ecosystem. Ekosistemy, ikh Optimizatsiya i Okhrana, 7: 251–260.
  37. Rabotnov, T., 1978. Fitotsenologiya [Phytocoenology]. Moskva: Izd-vo MGU. 384 p.
  38. Razumovskiy, S. M., 1981. Zakonomernosti dinamiki biotsenozov [Patterns of the dynamics of biocenoses]. Moskow: Nauka. 231 p.
  39. Razumovskiy, S.M., 1999. Izbrannyye trudy [Selected works]. Moscow: KMK. 560 p.
  40. Reyntam, L.Y., 2001. Humus state in primary soils under the forest on the quarry dumps of the shale industry. Pochvovedenie, 10: 1207–1216.
  41. Robichaud, P.R., Ashmun, L.E., Sims, B.D., 2010. Post-fire treatment effectiveness for hillslope stabilization. General Technical Report RMRS-GTR-240. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 62 p. https://doi.org/10.2737/RMRS-GTR-24010.2737/RMRS-GTR-240
  42. Rode, A.A., 1984. Genezis pochv i sovremennyye protsessy pochvoobrazovaniya [Soil genesis and modern factors of soil formation]. Moskva: Nauka. 254 p.
  43. Rozanov B.G., 2004. Morfologiya pochv [Soil morphology]. Moscow: Akademicheskiĭ Proyekt. 432 p.
  44. Rusanov, A.M., 2012. The current stage of the evolution of agro-landscapes of steppe and forest-steppe zones (on the example of the Orenburg region). Vestnik OGU, 6: 128–132.
  45. Severtsov, A.C., 1990. Intraspecific diversity as a cause of evolutionary stability. Zhurnal Obshcheĭ Biologii, 51 (5): 579–589.
  46. Shishov, L.L., Tonkonogov, V.D., Lebedeva, I.I., Gerasimova, M.I., 2004. Klassifikatsiya i diagnostika pochv Rossii [Classification and diagnostics of soils in Russia]. Smolensk: Oykumena. 341 p.
  47. Shrestha, R.K., Lal, R., 2010. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma, 157 (3–4): 196–205. https://doi.org/10.1016/j.geoderma.2010.04.01310.1016/j.geoderma.2010.04.013
  48. Smagin, A.V., 2010. Biogeofizicheskiye mekhanizmy samoorganizatsii dolinnykh lesnykh ekosistem na pochvakh legkogo granulometricheskogo sostava [Biogeophysical mechanisms of self-organization of valley forest ecosystems on soils of light granulometric composition]. Ekologicheskiĭ Vestnik Severnogo Kavkaza, 6 (4): 17–29.
  49. Sokolov, I.A., 1997. Pochvoobrazovaniye i ekzogenez [Soil formation and exogenesis]. Moscow: Pochv. in-t im. V.V. Dokuchayeva. 239 p.
  50. Sumina, O. I., Koptseva, E. M., 2019. Seed distribution drivers at an early stage of vegetation development in a sand quarry. Tomsk State University. Journal of Biology, 46: 48–63. https://doi.org/10.17223/19988591/46/310.17223/19988591/46/3
  51. Tang, J., Bolstad, P.V., Martin, J. G., 2009. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. Global Change Biology, 15 (1): 145–155. https://doi.org/10.1111/j.1365-2486.2008.01741.x10.1111/j.1365-2486.2008.01741.x
  52. Targulian, V., Goryachkin, S. (eds), 2008. Pamyat’ pochv: Pochva kak pamyat’ biosferno-geosferno-antroposfernykh vzaimodeĭstviĭ [Soil memory: soil as a memory of biosphere-geosphere-anthroposphere interaction]. Moscow: Inst. Geogr., Russian Acad. Sci. 692 p.
  53. Targulian, V.O., 1985. Planetarnyye ekzogennyye protsessy i pochvoobrazovaniye [Planetary exogenous processes and soil formation]. Izvestiya Akademii Nauk SSSR. Seriya Biologicheskaya, 6: 51–59.
  54. Tolchelnikov, Y.S., 1985. O sushchnosti ponyatiya “Pochva” [About the essence of the concept of “Soil”]. Vestnik Moskovskogo Universiteta, 17 (3): 52–58.
  55. Trofimov, S.S., Titlyanova, A.A., Klevenskaya, I.A., 1979. Sistemnyy podkhod k izucheniyu protsessov pochvoobrazovaniya v tekhnogennykh landshaftakh [A systematic approach to the study of soil formation processes in technogenic landscapes]. In Trofimov, S.S. (ed.). Pochvoobrazovaniye v tekhnogennykh landshaftakh. Novosibirsk: Nauka, p. 3–19.
  56. Tsibart, A. S., Gennadiev, A.N., 2009. The trend of changes in forest soils of the Amur region under the influence of the pyrogenic factor. Vestnik Moskovskogo Universiteta. Seriya 5. Geografiya, 3: 66–74.
  57. Wanner, M., Dunger, W., 2002. Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany. European Journal of Soil Biology, 38 (2): 137–143. https://doi.org/10.1016/S1164-5563(02)01135-410.1016/S1164-5563(02)01135-4
  58. Zakharov, S.A., 1945. Evolyutsiya pochvoobrazovaniya v svyazi s istoriyeĭ zemnoĭ kory [Evolution of soil formation in connection with the history of the Earth’s crust]. Pochvovedeniye, 1: 54.
  59. Zavarzina, A. G., Zavarzin, A.A., 2013. Gumus v rannikh nazemnykh ekosistemakh [Humus in early terrestrial ecosystems]. Priroda, 9: 49–58.
  60. Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, No. 106. Rome: FAO. 192 p.
DOI: https://doi.org/10.2478/foecol-2022-0006 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 51 - 60
Submitted on: Apr 20, 2021
Accepted on: Oct 26, 2021
Published on: Dec 30, 2021
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Evgeny V. Abakumov, Elena M. Koptseva, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.