References
- Abraham, A., Nath, B., 2001. Hybrid intelligent systems design – A review of a decade of research. Technical Report, 5/2000. Gippsland School of Computing and Information Technology, Monash University, Australia.
- Akbarzadeh, A., Taghizadeh Mehrjardi, R., Rouhipour, H., Gorji, M., Refah, H.G. 2009. Estimating of soil erosion covered with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal of Applied Sciences Research, 5: 505–514. (In Persian).
- Assad, A.A., Gass, S.I. (eds), 2011. Profiles in operations research: Pioneers and innovators. International Series in Operations Research et Management Science, 147. Boston: Springer Science & Business Media. 824 p.10.1007/978-1-4419-6281-2
- Bernard. V., Thomas, J., Abarbanell, J., 1993. How sophisticated is the market in interpreting earnings new? Applied Corporate Finance, 6: 54–63. https://doi.org/10.1111/j.1745-6622.1993.tb00383.x10.1111/j.1745-6622.1993.tb00383.x
- Boroghani, M., Hayavi, F., Noor, H., 2012. Affectability of splash erosion by poly-acryl-amide application and rainfall intensity. Soil and Water Research. (4): 159–165. https://doi.org/10.17221/45/2011-SWR10.17221/45/2011-SWR
- Boroghani, M., Mirnia, S. K., Vahhabi, J., Ahmadi, S. J., Charkhi, A., 2011. Nanozeolite synthesis and the effect of on the runoff and erosion control under rainfall simulator. Australian Journal of Basic and Applied Sciences, 5 (12): 1156–1164.
- Chen, ST., Yu, PS., 2007. Pruning of support vector networks on flood forecasting. Journal of Hydrology, 347: 67–78. https://doi.org/10.1016/j.jhydrol.2007.08.02910.1016/j.jhydrol.2007.08.029
- Ciğizoğlu, HK., Kişi, Ö., 2006. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 317: 221–238. https://doi.org/10.1016/j.jhydrol.2005.05.01910.1016/j.jhydrol.2005.05.019
- Cimen, M., 2008. Estimation of daily-suspended sediments using support vector machines. Hydrological Sciences Journal, 53: 656–666. https://doi.org/10.1623hysj.53.3.65610.1623/hysj.53.3.656
- Demuth, H., Beale, M., 1998. Neural Network Toolbox for Use with MATLAB. User’s Guide. Version 3. Natick: The MathWorks Inc.
- Dibike, YB., Velickov, S., Sololatine, D.P., Abbott, MB, 2001. Model induction with support vector machine: introduction and application. Journal of Computing in Civil Engineering, 15: 208–216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)10.1061/(ASCE)0887-3801(2001)15:3(208)
- Firat, M., Gungor, M., 2010. Monthly total sediment forecasting using adaptive neuro fuzzy inference system. Stochastic Environmental Research and Risk Assessment, 24: 259–273. https://doi.org/10.1007/s00477-009-0315-110.1007/s00477-009-0315-1
- Hamidi, N., Kayaalp, N., 2008. Estimation of the amount of suspended sediment in the Tigris River using artificial neural networks. Clean, 4: 380–386. https://doi.org/10.1002/clen.20070009410.1002/clen.200700094
- Han, D., Chan, L., Zhu, N., 2007. Flood forecasting using support vector machines. Journal of Hydroinformatics, 4: 267–276. https://doi.org/10.2166/hydro.2007.02710.2166/hydro.2007.027
- He, Z., Wen, X., Liu, H., Du, J., 2014. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509: 379–386. https://doi.org/10.1016/j.jhydrol.2013.11.05410.1016/j.jhydrol.2013.11.054
- Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feed forward networks are universal approximates. Neural Networks, 5: 359–366. https://doi.org/10.1016/0893-6080(89)90020-810.1016/0893-6080(89)90020-8
- Hsu, R.J., Lin, C.Y., Hoi, HS, Zheng, SK, Lin, CC, Tsai, HJ, 2010. Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene. Nucleic Acids Research, 38 (13): 4384–4393. https://doi.org/10.1093/nar/gkq14810.1093/nar/gkq148
- Jang, J.S.R., 1993. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernet, 23: 665–685. https://doi.org/10.1109/21.25654110.1109/21.256541
- Kakaei Lafdani, E., Moghaddamnia, A., Ahmadi, A., Ebrahimi, H., 2014. Assessing the impact of input variables preprocessing into support vector machine through gamma test method for suspended sediment volume prediction. Journal of Range and Watershed Management, 67 (2): 289–303. (In Persian). DOI: 10.22059/jrwm.2014.51833
- Kane, E.S., Betts, E.F., Burgin, A.J., Clilverd, H.M., Crenshaw, C.L., Fellman, J.B., Myers-Smith, I.H., O’Donnell, J.A., Sobota, D.J., Verseveld, W.J., Jones, J.B., 2008. Precipitation control over inorganic nitrogen import-export budgets across watersheds: A synthesis of long-term ecological research. Ecohydrology, 1: 105–117. https://doi.org/10.1002/eco.1010.1002/eco.10
- Kane, J.M., Lauriello, J., Laska, E., Di Marino, M., Wolfgang, C.D., 2008. Long-term efficacy and safety of iloperidone: Results from 3 clinical trials for the treatment of schizophrenia. Journal of Clinical Psychopharmacology, 28 (2): S29–S35. DOI: 10.1097/JCP.0b013e318169cca710.1097/JCP.0b013e318169cca7
- Khan, M.S., Coulibaly, P., 2006. Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 3: 199–205. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:3(199)10.1061/(ASCE)1084-0699(2006)11:3(199)
- Kişi, Ö., 2004a. Daily suspended sediment modelling using a fuzzy differential evolution approach. Hydrological Sciences Journal, 1: 183–197. https://doi.org/10.1623/hysj.49.1.183.5400110.1623/hysj.49.1.183.54001
- Kişi, Ö., 2004b. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment prediction and estimation. Hydrological Sciences Journal, 6: 1025–1040. https://doi.org/10.1623/hysj.49.6.1025.5572010.1623/hysj.49.6.1025.55720
- Kisi, O., Shiri, J., 2012. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Computers and Geosciences, 43: 73–8. https://doi.org/10.1016/j.cageo.2012.02.00710.1016/j.cageo.2012.02.007
- Leguedois, S., Plannchon, O., Legout, C., Bissonnais, Y.L., 2005. Splash projection distance for aggregated soils: Theory and experiment. Soil Science Society of America Journal, 69: 30–37. https://doi.org/10.2136/sssaj2005.003010.2136/sssaj2005.0030
- Locke, J., Kitromilides, P., 1990. Deuterē pragmateia peri kyvernēseōs: dokimio me thema tēn alēthinē archē, ektasē kai skopo tēs politikēs exousias [Essay concerning the true original extent and end of civil government]. Athēna: Ekdoseis “GnMsē”. 302 p.
- Partal, T., Cigizoglu, HK, 2008. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology, 358: 317–331. https://doi.org/10.1016/j.jhydrol.2008.06.01310.1016/j.jhydrol.2008.06.013
- Rajaee, T., Mirbagheri, S.A., Zounemat-kermani, M., Nourani, V., 2009. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of the Total Environment, 407: 4916–4927. https://doi.org/10.1016/j.scitotenv.2009.05.01610.1016/j.scitotenv.2009.05.01619520419
- Schildt, G., 1998. A distributed user adaptive neuro-fuzzy controller application for home automation. Foundation research project. Vienna University of Technology, Institute of Automation, Austria.
- Shu, C., Ouarda, T.B.M.J., 2008. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. Journal of Hydrology, 349: 31–43. https://doi.org/10.1016/j.jhydrol.2007.10.05010.1016/j.jhydrol.2007.10.050
- Sojka, R.E., 2006. PAM Research Project. [cit. 2021-05-25]. http://kimberly.ars.usda.gov/pampage.shtml
- Sojka, R.E., Orts, W.J., Entry, J.A., 2004. Soil physics and hydrology: conditioners. In Hillel, D. (ed.). Encyclopedia of soil science. Oxford: Elsevier, p. 301–306. https://doi.org/10.1016/B0-12-348530-4/00501-410.1016/B0-12-348530-4/00501-4
- Soltani, S., Ghezelsoflu, N., Boroughani, M., 2019. Using polyacrylamide to control soil splash erosion in rainfalls with variable intensity and duration. Spanish Journal of Soil Science, 9 (3): 213–222. https://doi.org/10.3232/SJSS.2019.V9.N3.0510.3232/SJSS.2019.V9.N3.05
- Sousa-Vieira, M. E., Suarez-Gonzalez, A., Lopez-Ardao, J. C., Lopez-Garcia, C., 2009. Study and M/G/∞-based modeling of the correlation characteristics of H. 264/AVC video traffic and the SVC extension. In 2009 IEEE International symposium on broadband multimedia systems and broadcasting : Broadband multimedia symposium 2009. 13-15 May 2009, Euskalduna Conference Centre, Bilbao, Spain. Piscataway, NJ: IEEE, p. 1–5.10.1109/ISBMSB.2009.5133734
- Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., 2012. Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes models. Mathematical Problems in Engineering, 2012: article ID 974638, 26 p.. https://doi.org/10.1155/2012/97463810.1155/2012/974638
- Tripathi, R.P., Singh, H.P., 2001. Soil erosion and conservation. New Delhi: New Age International Limited Publication. 210 p.
- Vapnik, V., 1995. The nature of statistical learning theory. NewYork: Springer. 189 p. https://doi.org/10.1007/978-1-4757-3264-1-8
- Vapnik, V., Golowich, S.E., Smola, A., 1997. Support vector method for function approximation, regression estimation, and signal processing. In NIPS’96: Proceedings of the 9th International conference on neural information processing systems. Cambridge, MA, USA: M.I.T. Press, p. 281–287. https://doi.org/10.1007/978-1-4757-2440-010.1007/978-1-4757-2440-0
- Wallace, A., Wallace, G.A., 1986. Effects of soil conditioners on emergence and growth of tomato, cotton, and lettuce seedlings. Soil Science, 141: 313–316. https://doi.org/10.1097/00010694-198605000-0000210.1097/00010694-198605000-00002
- Wang, W.C., Chau, K.W., Cheng, C.T., Qiu, L., 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374: 294–306. https://doi.org/10.1016/j.jhydrol.2009.06.01910.1016/j.jhydrol.2009.06.019
- Wang, W.J., Xu, Z.B., Lu, WZ., Zhang, X.Y., 2003. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55: 643–663. https://doi.org/10.1016/S0925-2312(02)00632-X10.1016/S0925-2312(02)00632-X
- Yu, H., Wilamowski, B.M., 2011. Levenberg-Marquardt training. In Wilamowski, B.M., Irwin, J.D. The industrial electronics handbook. Intelligent Systems. Vol. 5. Boca Raton: CRC Press, Chapter 12, p. 12-1–12-15. https://doi.org/10.1201/9781315218427-1210.1201/9781315218427-12
- Yu, P.S., Chen, S.T., Chang, I.F., 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328: 704–716. https://doi.org/10.1016/j.jhydrol.2006.01.02110.1016/j.jhydrol.2006.01.021
- Zhang, Y., 1993. A modified effective binary diffusion model. Journal of Geophysical Research-Solid Earth, 98 (7): 11901–11920. https://doi.org/10.1029/93JB0042210.1029/93JB00422
- Zumr, D., Mützenberg, D.V., Neumann, M., Jeřábek, J., Laburda, T., Kavka, P., Johannsen, L.L., Zambon, N., Klik, A., Strauss, P., Dostál, T., 2020. Experimental setup for splash erosion monitoring—Study of silty loam splash characteristics. Sustainability, 12 (1): 157. https://doi.org/10.3390/su1201015710.3390/su12010157