Have a personal or library account? Click to login
A comparative assessment between artificial neural network, neuro-fuzzy, and support vector machine models in splash erosion modelling under simulation circumstances Cover

A comparative assessment between artificial neural network, neuro-fuzzy, and support vector machine models in splash erosion modelling under simulation circumstances

Open Access
|Dec 2021

References

  1. Abraham, A., Nath, B., 2001. Hybrid intelligent systems design – A review of a decade of research. Technical Report, 5/2000. Gippsland School of Computing and Information Technology, Monash University, Australia.
  2. Akbarzadeh, A., Taghizadeh Mehrjardi, R., Rouhipour, H., Gorji, M., Refah, H.G. 2009. Estimating of soil erosion covered with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal of Applied Sciences Research, 5: 505–514. (In Persian).
  3. Assad, A.A., Gass, S.I. (eds), 2011. Profiles in operations research: Pioneers and innovators. International Series in Operations Research et Management Science, 147. Boston: Springer Science & Business Media. 824 p.10.1007/978-1-4419-6281-2
  4. Bernard. V., Thomas, J., Abarbanell, J., 1993. How sophisticated is the market in interpreting earnings new? Applied Corporate Finance, 6: 54–63. https://doi.org/10.1111/j.1745-6622.1993.tb00383.x10.1111/j.1745-6622.1993.tb00383.x
  5. Boroghani, M., Hayavi, F., Noor, H., 2012. Affectability of splash erosion by poly-acryl-amide application and rainfall intensity. Soil and Water Research. (4): 159–165. https://doi.org/10.17221/45/2011-SWR10.17221/45/2011-SWR
  6. Boroghani, M., Mirnia, S. K., Vahhabi, J., Ahmadi, S. J., Charkhi, A., 2011. Nanozeolite synthesis and the effect of on the runoff and erosion control under rainfall simulator. Australian Journal of Basic and Applied Sciences, 5 (12): 1156–1164.
  7. Chen, ST., Yu, PS., 2007. Pruning of support vector networks on flood forecasting. Journal of Hydrology, 347: 67–78. https://doi.org/10.1016/j.jhydrol.2007.08.02910.1016/j.jhydrol.2007.08.029
  8. Ciğizoğlu, HK., Kişi, Ö., 2006. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 317: 221–238. https://doi.org/10.1016/j.jhydrol.2005.05.01910.1016/j.jhydrol.2005.05.019
  9. Cimen, M., 2008. Estimation of daily-suspended sediments using support vector machines. Hydrological Sciences Journal, 53: 656–666. https://doi.org/10.1623hysj.53.3.65610.1623/hysj.53.3.656
  10. Demuth, H., Beale, M., 1998. Neural Network Toolbox for Use with MATLAB. User’s Guide. Version 3. Natick: The MathWorks Inc.
  11. Dibike, YB., Velickov, S., Sololatine, D.P., Abbott, MB, 2001. Model induction with support vector machine: introduction and application. Journal of Computing in Civil Engineering, 15: 208–216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)10.1061/(ASCE)0887-3801(2001)15:3(208)
  12. Firat, M., Gungor, M., 2010. Monthly total sediment forecasting using adaptive neuro fuzzy inference system. Stochastic Environmental Research and Risk Assessment, 24: 259–273. https://doi.org/10.1007/s00477-009-0315-110.1007/s00477-009-0315-1
  13. Hamidi, N., Kayaalp, N., 2008. Estimation of the amount of suspended sediment in the Tigris River using artificial neural networks. Clean, 4: 380–386. https://doi.org/10.1002/clen.20070009410.1002/clen.200700094
  14. Han, D., Chan, L., Zhu, N., 2007. Flood forecasting using support vector machines. Journal of Hydroinformatics, 4: 267–276. https://doi.org/10.2166/hydro.2007.02710.2166/hydro.2007.027
  15. He, Z., Wen, X., Liu, H., Du, J., 2014. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509: 379–386. https://doi.org/10.1016/j.jhydrol.2013.11.05410.1016/j.jhydrol.2013.11.054
  16. Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feed forward networks are universal approximates. Neural Networks, 5: 359–366. https://doi.org/10.1016/0893-6080(89)90020-810.1016/0893-6080(89)90020-8
  17. Hsu, R.J., Lin, C.Y., Hoi, HS, Zheng, SK, Lin, CC, Tsai, HJ, 2010. Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene. Nucleic Acids Research, 38 (13): 4384–4393. https://doi.org/10.1093/nar/gkq14810.1093/nar/gkq148
  18. Jang, J.S.R., 1993. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernet, 23: 665–685. https://doi.org/10.1109/21.25654110.1109/21.256541
  19. Kakaei Lafdani, E., Moghaddamnia, A., Ahmadi, A., Ebrahimi, H., 2014. Assessing the impact of input variables preprocessing into support vector machine through gamma test method for suspended sediment volume prediction. Journal of Range and Watershed Management, 67 (2): 289–303. (In Persian). DOI: 10.22059/jrwm.2014.51833
  20. Kane, E.S., Betts, E.F., Burgin, A.J., Clilverd, H.M., Crenshaw, C.L., Fellman, J.B., Myers-Smith, I.H., O’Donnell, J.A., Sobota, D.J., Verseveld, W.J., Jones, J.B., 2008. Precipitation control over inorganic nitrogen import-export budgets across watersheds: A synthesis of long-term ecological research. Ecohydrology, 1: 105–117. https://doi.org/10.1002/eco.1010.1002/eco.10
  21. Kane, J.M., Lauriello, J., Laska, E., Di Marino, M., Wolfgang, C.D., 2008. Long-term efficacy and safety of iloperidone: Results from 3 clinical trials for the treatment of schizophrenia. Journal of Clinical Psychopharmacology, 28 (2): S29–S35. DOI: 10.1097/JCP.0b013e318169cca710.1097/JCP.0b013e318169cca7
  22. Khan, M.S., Coulibaly, P., 2006. Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 3: 199–205. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:3(199)10.1061/(ASCE)1084-0699(2006)11:3(199)
  23. Kişi, Ö., 2004a. Daily suspended sediment modelling using a fuzzy differential evolution approach. Hydrological Sciences Journal, 1: 183–197. https://doi.org/10.1623/hysj.49.1.183.5400110.1623/hysj.49.1.183.54001
  24. Kişi, Ö., 2004b. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment prediction and estimation. Hydrological Sciences Journal, 6: 1025–1040. https://doi.org/10.1623/hysj.49.6.1025.5572010.1623/hysj.49.6.1025.55720
  25. Kisi, O., Shiri, J., 2012. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Computers and Geosciences, 43: 73–8. https://doi.org/10.1016/j.cageo.2012.02.00710.1016/j.cageo.2012.02.007
  26. Leguedois, S., Plannchon, O., Legout, C., Bissonnais, Y.L., 2005. Splash projection distance for aggregated soils: Theory and experiment. Soil Science Society of America Journal, 69: 30–37. https://doi.org/10.2136/sssaj2005.003010.2136/sssaj2005.0030
  27. Locke, J., Kitromilides, P., 1990. Deuterē pragmateia peri kyvernēseōs: dokimio me thema tēn alēthinē archē, ektasē kai skopo tēs politikēs exousias [Essay concerning the true original extent and end of civil government]. Athēna: Ekdoseis “GnMsē”. 302 p.
  28. Partal, T., Cigizoglu, HK, 2008. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology, 358: 317–331. https://doi.org/10.1016/j.jhydrol.2008.06.01310.1016/j.jhydrol.2008.06.013
  29. Rajaee, T., Mirbagheri, S.A., Zounemat-kermani, M., Nourani, V., 2009. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of the Total Environment, 407: 4916–4927. https://doi.org/10.1016/j.scitotenv.2009.05.01610.1016/j.scitotenv.2009.05.01619520419
  30. Schildt, G., 1998. A distributed user adaptive neuro-fuzzy controller application for home automation. Foundation research project. Vienna University of Technology, Institute of Automation, Austria.
  31. Shu, C., Ouarda, T.B.M.J., 2008. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. Journal of Hydrology, 349: 31–43. https://doi.org/10.1016/j.jhydrol.2007.10.05010.1016/j.jhydrol.2007.10.050
  32. Sojka, R.E., 2006. PAM Research Project. [cit. 2021-05-25]. http://kimberly.ars.usda.gov/pampage.shtml
  33. Sojka, R.E., Orts, W.J., Entry, J.A., 2004. Soil physics and hydrology: conditioners. In Hillel, D. (ed.). Encyclopedia of soil science. Oxford: Elsevier, p. 301–306. https://doi.org/10.1016/B0-12-348530-4/00501-410.1016/B0-12-348530-4/00501-4
  34. Soltani, S., Ghezelsoflu, N., Boroughani, M., 2019. Using polyacrylamide to control soil splash erosion in rainfalls with variable intensity and duration. Spanish Journal of Soil Science, 9 (3): 213–222. https://doi.org/10.3232/SJSS.2019.V9.N3.0510.3232/SJSS.2019.V9.N3.05
  35. Sousa-Vieira, M. E., Suarez-Gonzalez, A., Lopez-Ardao, J. C., Lopez-Garcia, C., 2009. Study and M/G/∞-based modeling of the correlation characteristics of H. 264/AVC video traffic and the SVC extension. In 2009 IEEE International symposium on broadband multimedia systems and broadcasting : Broadband multimedia symposium 2009. 13-15 May 2009, Euskalduna Conference Centre, Bilbao, Spain. Piscataway, NJ: IEEE, p. 1–5.10.1109/ISBMSB.2009.5133734
  36. Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., 2012. Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes models. Mathematical Problems in Engineering, 2012: article ID 974638, 26 p.. https://doi.org/10.1155/2012/97463810.1155/2012/974638
  37. Tripathi, R.P., Singh, H.P., 2001. Soil erosion and conservation. New Delhi: New Age International Limited Publication. 210 p.
  38. Vapnik, V., 1995. The nature of statistical learning theory. NewYork: Springer. 189 p. https://doi.org/10.1007/978-1-4757-3264-1-8
  39. Vapnik, V., Golowich, S.E., Smola, A., 1997. Support vector method for function approximation, regression estimation, and signal processing. In NIPS’96: Proceedings of the 9th International conference on neural information processing systems. Cambridge, MA, USA: M.I.T. Press, p. 281–287. https://doi.org/10.1007/978-1-4757-2440-010.1007/978-1-4757-2440-0
  40. Wallace, A., Wallace, G.A., 1986. Effects of soil conditioners on emergence and growth of tomato, cotton, and lettuce seedlings. Soil Science, 141: 313–316. https://doi.org/10.1097/00010694-198605000-0000210.1097/00010694-198605000-00002
  41. Wang, W.C., Chau, K.W., Cheng, C.T., Qiu, L., 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374: 294–306. https://doi.org/10.1016/j.jhydrol.2009.06.01910.1016/j.jhydrol.2009.06.019
  42. Wang, W.J., Xu, Z.B., Lu, WZ., Zhang, X.Y., 2003. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55: 643–663. https://doi.org/10.1016/S0925-2312(02)00632-X10.1016/S0925-2312(02)00632-X
  43. Yu, H., Wilamowski, B.M., 2011. Levenberg-Marquardt training. In Wilamowski, B.M., Irwin, J.D. The industrial electronics handbook. Intelligent Systems. Vol. 5. Boca Raton: CRC Press, Chapter 12, p. 12-1–12-15. https://doi.org/10.1201/9781315218427-1210.1201/9781315218427-12
  44. Yu, P.S., Chen, S.T., Chang, I.F., 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328: 704–716. https://doi.org/10.1016/j.jhydrol.2006.01.02110.1016/j.jhydrol.2006.01.021
  45. Zhang, Y., 1993. A modified effective binary diffusion model. Journal of Geophysical Research-Solid Earth, 98 (7): 11901–11920. https://doi.org/10.1029/93JB0042210.1029/93JB00422
  46. Zumr, D., Mützenberg, D.V., Neumann, M., Jeřábek, J., Laburda, T., Kavka, P., Johannsen, L.L., Zambon, N., Klik, A., Strauss, P., Dostál, T., 2020. Experimental setup for splash erosion monitoring—Study of silty loam splash characteristics. Sustainability, 12 (1): 157. https://doi.org/10.3390/su1201015710.3390/su12010157
DOI: https://doi.org/10.2478/foecol-2022-0003 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 23 - 34
Submitted on: Apr 24, 2021
Accepted on: Oct 12, 2021
Published on: Dec 30, 2021
Published by: Slovak Academy of Sciences, Institute of Forest Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Mahdi Boroughani, Somayeh Soltani, Nafiseh Ghezelseflu, Iman Pazhouhan, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.