Have a personal or library account? Click to login
Plasticity in response to soil texture affects the relationships between a shoot and root trait and responses vary by population Cover

Plasticity in response to soil texture affects the relationships between a shoot and root trait and responses vary by population

Open Access
|Jul 2021

References

  1. Abbasi, U.A., You, W.H., Yan, E.R, 2021. Correlations between leaf economics, hydraulic, and shade-tolerance traits among co-occurring individual trees. Acta Oecologica, 110: 103673. https://doi.org/10.1016/j.actao.2020.10367310.1016/j.actao.2020.103673
  2. Adu, M.O., 2020. Causal shoot and root system traits to variability and plasticity in juvenile cassava (Manihot esculenta Crantz) plants in response to reduced soil moisture. Physiology and Molecular Biology of Plants, 26: 1799–1814. https://doi.org/10.1007/s12298-020-00865-410.1007/s12298-020-00865-4
  3. Atwater, D.Z., James, J.J., Leger, E.A., 2015. Seedling root traits strongly influence field survival and performance of a common bunchgrass. Basic and Applied Ecology, 16: 128–140. https://doi.org/10.1016/j.baae.2014.12.00410.1016/j.baae.2014.12.004
  4. Boutraa, T., Akhkha, A., Al-Shoaibi, A.A., Alhejeli, A.M., 2010. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. Journal of Taibah University for Science, 3: 39–48. https://doi.org/10.1016/S1658-3655(12)60019-310.1016/S1658-3655(12)60019-3
  5. Casper, B.B., Jackson, R.B., 1997. Plant competition underground. Annual Review of Ecology and Systematics, 28: 545–570. https://doi.org/10.1146/annurevecolsys.28.1.545
  6. Chambers, J.C., Roundy, B.A., Blank, R.R., Meyer, S.E., Whittaker, A., 2007. What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs, 77: 117–145.10.1890/05-1991
  7. Chapman, N., Miller, A.J., Lindsey, K., Whalley, W.R., 2012. Roots, water, and nutrient acquisition: let’s get physical. Trends in Plant Science, 17: 701–710. https://doi.org/10.1016/j.tplants.2012.08.00110.1016/j.tplants.2012.08.00122947614
  8. Craine, J. M., Dybzinski, R., 2013. Mechanisms of plant competition for nutrients, water and light. Functional Ecology, 27: 833–840. https://doi.org/10.1111/1365-2435.1208110.1111/1365-2435.12081
  9. Crawley, M.J., 2005 Statistics: an introduction using R. Chicester: John Wiley & Sons Ltd. 376 p.
  10. Foxx, A.J., Fort, F., 2019. Root and shoot competition lead to contrasting competitive outcomes under water stress: a systematic review and meta-analysis. PLoS ONE, 14: 1–17. https://doi.org/10.1371/journal.pone.022067410.1371/journal.pone.0220674690555331825953
  11. Foxx, A.J., Kramer, A.T., 2020a. Variation in number of root tips influences survival in competition with an invasive grass. Journal of Arid Environments, 179: 104189. https://doi.org/10.1016/j.jaridenv.2020.10418910.1016/j.jaridenv.2020.104189
  12. Foxx, A.J., Kramer, A.T., 2020b. Hidden variation: cultivars and wild plants differ in trait variation with surprising root trait outcomes. Restoration Ecology: 1–8. https://doi.org/10.1111/rec.1333610.1111/rec.13336
  13. Foxx, A., Wojcik, S., 2020. Bromus tectorum population root and shoot trait responses to differing substrate types. Arch: Northwestern University Institutional Repository. https://doi.org/10.21985/n2-kt71-ye45.
  14. Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P., Aerts, R., 2010. Evidence of the “plant economics spectrum” in a subarctic flora. Journal of Ecology, 98: 362–373. https://doi.org/10.1111/j.1365-2745.2009.01615.x10.1111/j.1365-2745.2009.01615.x
  15. Hajek, P., Hertel, D., Leuschner, C., 2013. Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides). Frontiers in Plant Science, 4: 415. https://doi.org/10.3389/fpls.2013.0041510.3389/fpls.2013.00415380108624155751
  16. Jupp, A., Newman, I., 1987. Morphological and anatomical effects of severe drought on the roots of Lolium perenne L. New Phytologist, 105: 393–402. https://doi.org/10.1111/j.1469-8137.1987.tb00876.x10.1111/j.1469-8137.1987.tb00876.x33873904
  17. Kembel, S.W., Cahill, J., 2011. Independent evolution of leaf and root traits within and among temperate grassland plant communities. PLoS ONE, 6: 2–10. https://doi.org/10.1371/journal.pone.001999210.1371/journal.pone.0019992311058021687704
  18. Lazof, D.B., Rufty, T.W., Redinbaugh, M.G., 1992. Localization of nitrate absorption and translocation within morphological regions of the corn root. Plant Physiology, 100: 1251–1258.10.1104/pp.100.3.1251107577416653113
  19. Leger, E.A., Baughman, O.W., 2015. What seeds to plant in the Great Basin? Comparing traits prioritized in native plant cultivars and releases with those that promote survival in the field. Natural Areas Journal, 35: 54–68. https://doi.org/10.3375/043.035.010810.3375/043.035.0108
  20. Liu, J.G., Mahoney, K.J., Sikkema, P.H., Swanton, C.J., 2009. The importance of light quality in crop-weed competition. Weed Research, 49: 217–224. https://doi.org/10.1111/j.1365-3180.2008.00687.x10.1111/j.1365-3180.2008.00687.x
  21. Martre, P., North, G.B., Bobich, E.G., Nobel, P.S., 2002. Root deployment and shoot growh for two desert species in response to soil rockiness. American Journal of Botany, 89: 1933–1939. https://doi.org/10.3732/ajb.89.12.193310.3732/ajb.89.12.193321665622
  22. McGrail, R.K., Van Sanford, D.A., McNear, D.H., 2020. Trait-based root phenotyping as a necessary tool for crop selection and improvement. Agronomy, 10: 1–19. https://doi.org/10.3390/agronomy1009132810.3390/agronomy10091328
  23. Nye, P.H., Tinker, P.B., 1977. Solute movement in the rhizosphere. Oxford: Blackwell. 342 p.
  24. Oláh, B., Brière, C., Bécard, G., Dénarié, J., Gough, C., 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant Journal, 44: 195–207. https://doi.org/10.1111/j.1365-313X.2005.02522.x10.1111/j.1365-313X.2005.02522.x16212600
  25. Placido, D.F., Sandhu, J., Sato, S.J., Nersesian, N., Quach, T., Clemente, T.E., Staswick, P.E., Walia, H., 2020. The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnology Journal, 18: 1955–1968. https://doi.org/10.1111/pbi.1335510.1111/pbi.13355741578432031318
  26. R Core Team, 2021. R: a language and environment for statistical computing. Vienna, Austria: R Statistical Computing. [cit. 2021-05-19]. https://www.R-project.org/
  27. Rowe, C.L.J., Leger, E., 2011. Competitive seedlings and inherited traits: a test of rapid evolution of Elymus multisetus (big squirreltail) in response to cheatgrass invasion. Evolutionary Applications, 4: 485–498. https://doi.org/10.1111/j.1752-4571.2010.00162.x10.1111/j.1752-4571.2010.00162.x335252925567997
  28. Sasse, J., Kosina, S.M., de Raad, M., Jordan, J.S., Whiting, K., Zhalnina, K., Northen, T.R., 2020. Root morphology and exudate availability are shaped by particle size and chemistry in Brachypodium distachyon. Plant Direct, 4: 1–14. https://doi.org/10.1002/pld3.20710.1002/pld3.207733062432642632
  29. Sharma, R.B., Ghidyal, B.P., 1977. Soil water-root relations in wheat: water extraction rate of wheat roots that developed under dry and moist conditions. Agronomy Journal, 69: 231–233. https://doi.org/10.2134/agronj1977.00021962006900020009x10.2134/agronj1977.00021962006900020009x
  30. Sharp, R.E., Davies, W.J., 1979. Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta, 147: 43–49. https://doi.org/10.1007/BF0038458910.1007/BF0038458924310893
  31. Shen, Y., Gilbert, G.S., Li, W., Fang, M., Lu, H., Yu, S., 2019. Linking aboveground traits to root traits and local environment: implications of the plant economics spectrum. Frontiers in Plant Science, 10: 1–12. https://doi.org/10.3389/fpls.2019.0141210.3389/fpls.2019.01412683172331737024
  32. Silva, D.D., Kane, M.E., Beeson, R.C., 2012. Changes in root and shoot growth and biomass partition resulting from different irrigation intervals for Ligustrum japonicum Thunb. Horticultural Science, 47: 1634–1640. https://doi.org/10.21273/HORTSCI.47.11.163410.21273/HORTSCI.47.11.1634
  33. Sorgonà, A., Abenavoli, M.R., Gringeri, P.G., Cacco, G., 2007. Comparing morphological plasticity of root orders in slow- and fast-growing citrus rootstocks supplied with different nitrate levels. Annals of Botany, 100: 1287–1296. https://doi.org/10.1093/aob/mcm20710.1093/aob/mcm207275924917881338
  34. Stevanato, P., Trebbi, D., Bertaggia, M., Colombo, M., Broccanello, C., Concheri, G., Saccomani, M., 2011. Root traits and competitiveness against weeds in sugar beet. International Sugar Journal, 113: 24–28.
  35. Varney, G., Canny, M., 1993. Rates of water uptake into the mature root systems of maize plants. New Phytologist, 123: 775–786. https://doi.org/10.1111/j.1469-8137.1993.tb03789.x10.1111/j.1469-8137.1993.tb03789.x
  36. Wang, X., Taub, D.R., 2010. Interactive effects of elevated carbon dioxide and environmental stresses on root mass fraction in plants: a meta-analytical synthesis using pairwise techniques. Oecologia, 163: 1–11. https://doi.org/10.1007/s00442-010-1572-x10.1007/s00442-010-1572-x20155287
  37. Westoby, M., 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199: 213–227. https://doi.org/10.1023/A:100432722472910.1023/A:1004327224729
  38. Young, J., Clements, C., 2007. Cheatgrass rangelands by grazing. Rangelands, 29: 15–20. https://doi.org/10.2111/1551-501X(2007)29[15:CAGR]2.0.CO;2
DOI: https://doi.org/10.2478/foecol-2021-0020 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 199 - 204
Submitted on: Jun 12, 2021
Accepted on: Jul 1, 2021
Published on: Jul 31, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Alicia J. Foxx, Siobhán T. Wojcik, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.