References
- Adams, M., Attiwill, P., 1986. Nutrient cycling and nitrogen mineralization in eucalyptus forests of southeastern Australia. II. Indices of nitrogen mineralization. Plant and Soil, 92: 341–362. https://doi.org/10.1007/BF0237248310.1007/BF02372483
- Ainsworth, E.A, Long, S.P., 2005. What have we learned from 15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165: 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x10.1111/j.1469-8137.2004.01224.x
- Al-Traboulsi, M., 1999. Responses of plant roots and soil of pastureland to increasing carbon dioxide concentration. PhD thesis. McGill University, Montréal, Canada. 80 p.
- Arnone, III.J.A., Hirschel, G., 1997. Does fertilizer application alter the effects of elevated CO2on Carex leaf litter quality and in situ decomposition in an alpine grassland. Acta Oecologica, 18: 201–206. https://doi.org/10.1016/S1146-609X(97)80006-910.1016/S1146-609X(97)80006-9
- Arnone, J., Bohlen, P., 1998. Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2. Oecologia, 116: 331–335. https://doi.org/10.1007/s00442005059410.1007/s004420050594
- Baggs, E., Ritcher, M., Cadisch, G., Hartwig, U., 2003. Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biology and Biochemistry, 35: 729–732. https://doi.org/10.1016/S0038-0717(03)00083-X10.1016/S0038-0717(03)00083-X
- Ball, A., 1997. Microbial decomposition at elevated CO2levels: effect of litter quality. Global Change Biology, 3: 379–386. https://doi.org/10.1046/j.1365-2486.1997.t01-1-00089.x10.1046/j.1365-2486.1997.t01-1-00089.x
- Barnard, R., Barthes, L., Leadley, PW., 2006. Short-term uptake of 15N by a grass and soil micro-organisms after long-term exposure to elevated CO2. Plant and Soil, 280: 91–99. https://doi.org/10.1007/s11104-005-2553-410.1007/s11104-005-2553-4
- Barnard, R., Leadley, P., Lensi, R., Barthes, L., 2005. Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2: a study in microcosms of Holcus lanatus. Acta Oecologica, 27: 171–178. https://doi.org/10.1016/j.actao.2004.11.00510.1016/j.actao.2004.11.005
- Baxter, R., Ashenden, T., Farrar, J., 1997. Effect of elevated CO2and nutrient status on growth, dry matter partitioning and nutrient content of Poa alpina var. vivipara L. Journal of Experimental Botany, 48 (312): 1477–1486. https://doi.org/10.1093/jxb/48.7.147710.1093/jxb/48.7.1477
- Bazzaz, F.A., 1990. The response of natural ecosystems to the rising global CO2levels. Annual Review of Ecology, Evolution and Systematics, 21: 167–96. https://doi.org/10.1146/annurev.es.21.110190.00112310.1146/annurev.es.21.110190.001123
- Bazzaz, F.A, Bassow, S.L., Berntson, G.M., Thomas, S.C., 1996. Elevated CO2and terrestrial vegetation: implications for and beyond the global carbon budget. In Walker, B., Steffen, W. (eds). Global change and terrestrial ecosystems. Cambridge: Cambridge University Press, p. 43–76.
- Berg, B., 1984. Decomposition of root litter and some factors regulating the process: long-term root decomposition in a Scots pine forest. Soil Biology and Biochemistry, 16: 609–617. https://doi.org/10.1016/0038-0717(84)90081-610.1016/0038-0717(84)90081-6
- Bloom, A., Asenio, J., Randall, L., Rachmilevitch, S., Cousins, A., Carlisle, E., 2012. CO2 enrichment inhibits shoot nitrate assimilation in C2 but not C2 plants and slows growth under nitrate in C2 plants. Ecology, 93: 355–367. https://doi.org/10.1890/11-0485.110.1890/11-0485.1
- Bloom, A., Burger, M., Kimball, B., Pinter, P., 2014. Nitrate assimilation is inhibited by elevated CO2in field-grown wheat. Nature Climate Change, 4 (6): 477–480. https://doi.org/10.1038/nclimate218310.1038/nclimate2183
- Blunder, J., Arndt, D.S., 2018. State of the climate 2018, a look at 2018: takeaway points from the State of the climate supplement. Bulletin of the American Meteorological Society, 100: 1625–1636. https://doi.org/10.1175/BAMS-D-19-0193.110.1175/BAMS-D-19-0193.1
- Cha, S., Chae, H., Lee, S., Shim, L., 2017. Effect of elevated atmospheric CO2concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla. PLoS One, 12 (2): e0171197. https://doi.org/10.1371/journal.pone.017119710.1371/journal.pone.0171197
- Cheng, W., 1999. Rhizosphere feedbacks in elevated CO2. Tree Physiology, 19: 313–320. https://doi.org/10.1093/treephys/19.4-5.31310.1093/treephys/19.4-5.313
- Cotrufo, M., Ineson, P., 1995. Effects of enhanced atmospheric CO2and nutrient supply on the quality and subsequent decomposition of the fine roots of Betula pendula Roth, and Picea sitchensis (Bong.) Carr. Plant and Soil, 170: 267–277. https://doi.org/10.1007/BF0001047910.1007/BF00010479
- Cotrufo, M., Ineson, P., Scott, A., 1998. Elevated CO2reduces the nitrogen concentration of plant tissues. Global Change Biology, 4: 43–54. https://doi.org/10.1046/j.1365-2486.1998.00101.x10.1046/j.1365-2486.1998.00101.x
- Couteaux, M., Mousseau, M., Celerier, M., Bottner, P., 1991. Increased atmospheric CO2litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos, 61: 54–64.10.2307/3545406
- Curtin, D., Campbell, C.A., Jalil, A., 1998. Effects of acidity on mineralization: pH-dependence of organic mineralization in weakly acidic soils. Soil Biology and Biochemistry, 30 (1): 57–64. https://doi.org/10.1016/S0038-0717(97)00094-110.1016/S0038-0717(97)00094-1
- Curtis, P.S., Drake, B.G., Whigham, D.F., 1989. Nitrogen and carbon dynamics in C2and C2estuarine marsh plants grown under elevated CO2 in situ. Oecologia, 78: 297–301. https://doi.org/10.1007/BF0037910110.1007/BF0037910128312573
- Curtis, P., O’neill, E., Teeri, J., Zak, P., Pregitzer, K., 1994. Below-ground responses to rising atmospheric CO2: implications for plants, soil biota and ecosystem processes. Plant and Soil, 165: 1–6. https://doi.org/10.1007/BF0000995710.1007/BF00009957
- Curtis, P., Wang, X., 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113: 299–313. https://doi.org/10.1007/s00442005038110.1007/s00442005038128307814
- Diaz, S., Grime, J., Harris, J., McPherson, E., 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature, 364: 616–617. https://doi.org/10.1038/364616a010.1038/364616a0
- Dijkstra, F., Pendall, E., Mosier, A., King, J., Milchunas, D., Morgan, J., 2008. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Functional Ecology, 22 (6): 975–982. https://doi.org/10.1111/j.1365-2435.2008.01398.x10.1111/j.1365-2435.2008.01398.x
- Easlon, H., Bloom, A., 2013. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling. Frontiers in Plant Science, 4: 1–6. https://doi.org/10.3389/fpls.2013.0030410.3389/fpls.2013.00304373942323983674
- Fargione, J., Tilman, D., Dybzinski, R., Lambers, J.H.R., Clark, C., Harpole, W.S., Knops, J.M.H., Reich, P.B., Loreau, M. From selection to complementarily: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B-Biological Sciences, 274: 871–876. https://doi.org/10.1098/rspb.2006.035110.1098/rspb.2006.0351209397917251113
- Farrar, J., Hawes, M., Jones, D., Lindow, S., 2003. How roots control the flux of carbon to the rhizosphere. Ecology, 84: 827–833. https://doi.org/10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
- Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J.A., Barraclough, A.D., Hovenden, M.J., 2016. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proceedings of the National Academy of Sciences of the United States of America, 113: 12757–12762. https://doi.org/10.1073/pnas.160503611310.1073/pnas.1605036113511165427791074
- Finzi, A.C., Norby, R.J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W.E., Hoosbeek, M.R., Iversen, C.M., Jackson, R.B., Kubiske, M.E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D.R., Schlesinger, W.H., Ceulemans, R., 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences of the United States of America, 104: 14014–14019. https://doi.org/10.1073/pnas.070651810410.1073/pnas.0706518104195580117709743
- Fitter, H., Graves, J.D., Wolfenden, J., Self, G.K., Brown, T.K., Bogie, D., Mansfield, T.A., 1997. Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytologist, 137: 247–255. https://doi.org/10.1046/j.1469-8137.1997.00804.x10.1046/j.1469-8137.1997.00804.x33863180
- Follett, R.F., 1993. Global climate change, U.S agriculture, and carbon dioxide. Journal of Production Agriculture, 6 (2): 181–190. https://doi.org/10.2134/jpa1993.018110.2134/jpa1993.0181
- Franzluebbers, A., Stuedemann, J., Schomberg, H., Wilkinson, S., 2000. Soil organic C and N pools under long-term pasture management in the Southern Piedmont, USA. Soil Biology and Biochemistry, 32: 469–478. https://doi.org/10.1016/S0038-0717(99)00176-510.1016/S0038-0717(99)00176-5
- Franzluebbers, A.J., 2010. Soil organic carbon in managed pastures of the southeastern United States of America. In Abberton, M., Conant, R., Batello, C. (eds). Grassland carbon sequestration: management, policy and economics. Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change. Rome, April 2009. Rome: Food and Agriculture Organization of the United Nations, p. 163–175.
- Fu, M.H., Xu, X.C., Tabatabai, M.A., 1987. Effect of pH on nitrogen mineralization in crop-residue-treated soils. Biology and Fertility of Soils, 5: 115–119. https://doi.org/10.1007/BF0025764510.1007/BF00257645
- Gill, R., Anderson, L., Polley, H., Johnson, H., Jackson, R., 2006. Potential nitrogen constrains on soil carbon sequestration under low and elevated atmospheric CO2. Ecology, 87: 41–52.10.1890/04-1696
- Ipcc, 2001. Climate change 2001: the scientific basis. Summary for policymakers. Cambridge: Cambridge University Press. 98 p.
- Ipcc, 2007. Climate change 2007: mitigation of climate change: Working Group III contribution to the Fourth Assessment Report of the IPCC. Cambridge: University Press.
- Janík, R., Bublinec, E., Dubová, M., 2015. Space-time patterns of soil pH and conductivity in submountain beech ecosystems in the West Carpathians. Folia Oecologica, 41 (2): 141–145.10.11118/beskyd201407020081
- Kimball, B.A., Kobayashi, K., Bindi, M., 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 77: 293–368. https://doi.org/10.1016/S0065-2113(02)77017-X10.1016/S0065-2113(02)77017-X
- King, J., Pregitzer, K., Zak, D., Kubiske, M., Holmes, W., 2003. Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability and effects on decomposition. Oikos, 94 (3): 403–416.10.1034/j.1600-0706.2001.940303.x
- King, J., Pregitzer, K., Zak, D., Sober, J., Isebrands, J., Dickson, R., Hendrey, G., Karnosky, D., 2001. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia, 128: 237–250. https://doi.org/10.1007/s004420100656 https://doi.org/10.1034/j.1600-0706.2001.940303.x10.1007/s00442010065628547473
- King, J.S., Thomas, R.B., Strain, B.R., 1997. Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature, and nitrogen. Plant and Soil, 195: 107–119. https://doi.org/10.1023/A:100429143074810.1023/A:1004291430748
- Knoepp, J.D., Swank, W.T., 1995. Comparison of available soil nitrogen assays in control and burned forested sites. Soil Science Society of America Journal, 59 (6): 1750–1754.10.2136/sssaj1995.03615995005900060035x
- Koch, G., 1988. Acquisition and allocation of carbon and nitrogen in the wild radish (Raphanus sativus x raphanistrum, Brassicacae). PhD thesis. Stanford University, Department of Biological Sciences. 300 p.
- Körner, C., 2003. Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philosophical transactions of the Royal Society of London, 361: 2023–2041. https://doi.org/10.1098/rsta.2003.124110.1098/rsta.2003.124114558907
- Kuzyakov, Y., Horwathc, W.R., Dorodnikova, M., Blagodatskayaa, E., 2019. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biology and Biochemistry, 128: 66–78. https://doi.org/10.1016/j.soilbio.2018.10.00510.1016/j.soilbio.2018.10.005
- Liu, J., Sefah, G., Apreku, T., 2018. Effects of elevated atmospheric CO2 and nitrogen fertilization on nitrogen cycling in experimental riparian wetlands. Water Science and Engineering, 11 (1): 39–45. https://doi.org/10.1016/j.wse.2017.05.00510.1016/j.wse.2017.05.005
- Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R., 2004. Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55: 591–628. https://doi.org/10.1146/annurev.arplant.55.031903.14161010.1146/annurev.arplant.55.031903.14161015377233
- Martens, C., Hickler, T., Davis-Reddy, C., Engelbrecht, F., Higgins, S., Maltitz, G.P., Midgley, G.F., Pfeiffer, M., Scheiter, S., 2021. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Global Change Biology, 27:340–358. https://doi.org/10.1111/gcb.1539010.1111/gcb.1539033037718
- Mathias, J.M., Thomas, R.B., 2021. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proceedings of the National Academy of Sciences, 118 (7): 1–9. https://doi.org/10.1073/pnas.201428611810.1073/pnas.2014286118789630933558233
- Moser, G., Gorenflo, A., Brenzinger, K., Keidel, L., Braker, G., Marhan, S., Clough, T.J., Muller, C., 2018. Explaining the doubling of N2O emissions under elevated CO2 in the Giessen FACE via in-field 15N tracing. Global Change Biology, 24: 3897–3910. https://doi.org/10.1111/gcb.1413610.1111/gcb.1413629569802
- Müller, C., Rütting, T., Abbasi, M., Laughlin, R., Kammann, C., Clough, T., Sherlock, R., Kattge, J., Jäger, H., Watson, C., Stevens, J., 2009. Effects of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biology and Biochemistry, 41: 1996–2001. https://doi.org/10.1016/j.soilbio.2009.07.00310.1016/j.soilbio.2009.07.003
- Norby, R.J., Ledford, J., Reilly, C.D., Miller, N.E., O’neill, E.G., 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Science of the United States of America, 101: 9689–9693. https://doi.org/10.1073/pnas.040349110110.1073/pnas.040349110147073615210962
- Norby, R., Pastor, J., Mellilo, J., 1986. Carbon-nitrogen interactions in CO2- enriched white oak: physiological and long term perspectives. Tree Physiology, 2: 233–241. https://doi.org/10.1093/treephys/2.1-2-3.23310.1093/treephys/2.1-2-3.23314975857
- Nowak, R.S., Ellsworth, D.S., Smith, S.D., 2004. Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 162: 253–280. https://doi.org/10.1111/j.1469-8137.2004.01033.x10.1111/j.1469-8137.2004.01033.x
- Owensby, C., Coyne, P., Auen, L., 1993. Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Plant Cell and Environment, 16: 843–850. https://doi.org/10.1111/j.1365-3040.1993.tb00506.x10.1111/j.1365-3040.1993.tb00506.x
- Overdieck, D., Reining, F., 1986. Effects of atmospheric CO2 enrichment on perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) competing in managed model-ecosystems. I: Phytomass production. Oecologia Plantarum, 7 (4): 357–366.
- Paterson, E., Hall, J.M., Rattray, E.A., Griffiths, B.S., Ritz, K., Killham, K., 1997. Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biology, 3: 363–377. https://doi.org/10.1046/j.1365-2486.1997.t01-1-00088.x10.1046/j.1365-2486.1997.t01-1-00088.x
- Paterson, E., Rattary, E., Killham, K., 1996. Effect of elevated atmospheric CO2 concentration on C-partitioning and rhizosphere C-flow for three plant species. Soil Biology and Biochemistry, 28 (2): 195–201. https://doi.org/10.1016/0038-0717(95)00125-510.1016/0038-0717(95)00125-5
- Potvin, C., Vasseur, L., 1997. Long term CO2 enrichment of a pasture community: species richness, dominance, and succession. Ecology, 78 (3): 666–677. https://doi.org/10.1890/0012-9658(1997)078[0666:LTCEOA]2.0.CO;2
- Powlson, D.S., Whitmore, A.P., Goulding, K.W., 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science, 62: 42–55. https://doi.org/10.1111/j.1365-2389.2010.01342.x10.1111/j.1365-2389.2010.01342.x
- Reich, P., Hungate, B., Lou, Y., 2006. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution and Systematics, 37: 611–636. https://doi.org/10.1146/annurev.ecolsys.37.091305.11003910.1146/annurev.ecolsys.37.091305.110039
- Robinson, D., Conroy, J.P., 1999. A possible plant-mediated feedback between elevated CO2, denitrification and the enhanced greenhouse effect. Soil Biology and Biochemistry, 31: 43–53. https://doi.org/10.1016/S0038-0717(98)00102-310.1016/S0038-0717(98)00102-3
- Rogers, A., Fischer, B.U., Bryant, J., Frehner, M., Blum, H., Rains, C.A., Long, S.P., 1998. Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiology, 118: 683–689. https://doi.org/10.1104/pp.118.2.68310.1104/pp.118.2.683
- Rogers, H.H., Runion, G.B., Krupa, S.V., 1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution, 83: 155–189. https://doi.org/10.1016/0269-7491(94)90034-510.1016/0269-7491(94)90034-5
- Runion, G.B., Curl, E.A., Rogers, H.H., Backman, P.A., Rodriguez-Kabana, R., Helms, B.E., 1994. Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agricultural and Forest Meteorology, 70: 117–130. https://doi.org/10.1016/0168-1923(94)90051-510.1016/0168-1923(94)90051-5
- Runion, G.B., Torbert, H.A., Prior, S.A., Rogers, H.H., 2009. Effects of elevated atmospheric carbon dioxide on soil carbon in terrestrial ecosystems of the southeastern US. In Lal, R., Follett, R.F. (eds). Soil carbon sequestration and the greenhouse effect. SSSA Special Publication, 57. Madison, WI: Soil Science Society of America, p. 233–262.
- Rütting, T., Clough, T., Müller, C., Lieffering, M., Newton, P., 2010. Ten years of elevated atmospheric CO2 alters soil N transformations in a sheep-grazed pasture. Global Change Biology, 16: 2530–2542. https://doi.org/10.1111/j.1365-2486.2009.02089.x10.1111/j.1365-2486.2009.02089.x
- Rütting, T, Andresen, L.C., 2015. Nitrogen cycle responses to elevated CO2 depend on ecosystem nutrient status. Nutrient Cycling in Agroecosystems, 101: 285–294. https://doi.org/10.1007/s10705-015-9683-810.1007/s10705-015-9683-8
- Schlesinger, W., Bernhardt, E. (eds), 2013. Biogeochemistry: an analysis of global change. Third edition. San Diego, Calif, USA: Academic Press. 672 p.
- Schneider, M.K., Luscher, A., Richter, M., Aeschlimann, U., Hartwig, U.A., Blum, H., Frossard, E., Nösberger, J., 2004. Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Global Change Biology, 10: 1377–1388. https://doi.org/10.1111/j.1365-2486.2004.00803.x10.1111/j.1365-2486.2004.00803.x
- Slmek, M., Cooper, J.E., 2002. The influence of soil pH on denitrification: progress towards the understanding of this interactions over the last 50 years. European Journal of Soil Science, 53 (3): 345–354. https://doi.org/10.1046/j.1365-2389.2002.00461.x10.1046/j.1365-2389.2002.00461.x
- Terrer, C., Vicca, S., Hungate, B.A., Phillips, R.P., Prentice, I.C., 2016. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353 (6294): 72–74.10.1126/science.aaf461027365447
- Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D., Tilman, D., 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology, 84: 2042–2050. https://doi.org/10.1890/02-043310.1890/02-0433
- Zak, D.R., Pregitzer, K., Curtis, P., Holmes, W.W., 2000. Atmospheric CO2 and the composition and function of soil microbial communities. Ecological Applications, 10: 47–59. https://doi.org/10.1890/1051-0761(2000)010[0047:ACATCA]2.0.CO;2
- Zhao, W., Zhang, J., Müller, C., Cai, Z., 2017. Effects of pH and mineralization on nitrification in a subtropical acid forest soil. Soil Research, 56 (3): 275–283. https://doi.org/10.1071/SR1708710.1071/SR17087
- Van Ginkel, J.H., Gorissen, A., 1998. In situ decomposition of grass roots as affected by elevated atmospheric carbon dioxide. Soil Science Society of America Journal, 62: 951–958. https://doi.org/10.2136/sssaj1998.03615995006200040015x10.2136/sssaj1998.03615995006200040015x
- Vasseur, L., Potvin, C., 1998. Natural pasture community response to enriched carbon dioxide atmosphere. Plant Ecology, 135: 31–41. https://doi.org/10.1023/A:100975340324610.1023/A:1009753403246
- Volder, A., Gifford, R., Evans, J., 2015. Effects of elevated atmospheric CO2 concentrations, clipping regimen and differential day/night atmospheric warming on tissue nitrogen concentrations of a perennial pasture grass. AoB Plants, 13: plv094, 1–15. https://doi.org/10.1093/aobpla/plv09410.1093/aobpla/plv094459174526272874
- Wang, C., Sun, Y., Chen, H., Ruan, H., 2021. Effects of elevated CO2 on the C:N stoichiometry of plants, soils, and microorganisms in terrestrial ecosystems. Catena, 201: 105219. https://doi.org/10.1016/j.catena.2021.10521910.1016/j.catena.2021.105219
- Waring, R., Landsberg, J., Williams, M., 1998. Net primary production of forests: a constant fraction of gross primary production? Tree Physiology, 18: 129–134. https://doi.org/10.1093/treephys/18.2.12910.1093/treephys/18.2.12912651397
- Yuan, Z.Y., Chen, H.Y., 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5 (5): 465–9. https://doi.org/10.1038/nclimate254910.1038/nclimate2549