Have a personal or library account? Click to login
Mid-term changes in the physiognomy of plant communities and functional plant groups define successional pathways of mountain vegetation in the province of Córdoba (Argentina) Cover

Mid-term changes in the physiognomy of plant communities and functional plant groups define successional pathways of mountain vegetation in the province of Córdoba (Argentina)

Open Access
|Mar 2021

References

  1. Aliaga, V.S., Ferrelli, F., Alberdi-Algarañaz, E. D., Bohn, V.Y., Piccolo, M.C., 2016. Distribución y variabilidad de la precipitación en la Región Pampeana, Argentina [Distribution and variability of the precipitation in the Pampean Region, Argentina]. Cuadernos de Investigación Geográfica, 42 (1): 261–280. https://doi.org/10.18172/cig.286710.18172/cig.2867
  2. Baldwin, M., Kellogg, C.E., Thorp, J., 1938. Soil classification. In Hambridge, G. (ed.). Soils and men. Yearbook of Agriculture. Washington D.C.: U.S. Dept. of Agriculture, p. 979–1001.
  3. Bernasconi Salazar, J., Karlin, M., Accietto, R., Schneider, C., Rufini, S., Arnulphi, S., 2015. Modelos de estados y transiciones: bases para el manejo de la vegetación en la Reserva Natural de la Defensa La Calera, Córdoba, Argentina [States and transitions models: bases for the management of the vegetation in the Natural Reserve of the Defence La Calera, Córdoba]. In Martinez Carretero, E., Dalmasso, A. (eds). Restauración ecológica en la diagonal árida de la Argentina 2. Mendoza: CRICyT-CONICET, p. 3–20.
  4. Braun-Blanquet, J., 1979. Fitosociología. Bases para el estudio de las comunidades vegetales [Phytosociology. Bases for the plant communities study]. Madrid: Ed. Blume. 820 p.
  5. Camilloni, I., 2018. Argentina y el cambio climático [Argentina and the climate change]. Ciencia e Investigación, 68 (5): 5–10.
  6. Castoldi, E., Quintana, J.R., Mata, R.G., Molina, J.A., 2013. Early post-fire plant succession in slash-pile prescribed burns of a sub-Mediterranean managed forest. Plant Ecology and Evolution, 146 (3): 272–278. https://doi.org/10.5091/plecevo.2013.84810.5091/plecevo.2013.848
  7. Cicuzza, D., Krömer, T., Poulsen, A.D., Abrahamczyk, S., Delhotal, T., Piedra, H.M., Kessler, M., 2013. A transcontinental comparison of the diversity and composition of tropical forest understory herb assemblages. Biodiversity Conservation, 22 (3): 755–772. https://doi.org/10.1007/s10531-013-0447-y10.1007/s10531-013-0447-y
  8. Craig, R.K., Nagle, J.C., Pardy, B., Schmitz, O.J., Smith, W.K., Christensen Jr., N.L., Neuman, J. (eds), 2012. Berkshire encyclopedia of sustainability 5/10: ecosystem management and sustainability. Vol. 5. Great Barrington (MA): Berkshire Publishing Group. 460 p.
  9. Corenblit, D., Steiger, J., Gurnell, A.M., Naiman, R.J., 2009. Plants intertwine fluvial landform dynamics with ecological succession and natural selection: a niche construction perspective for riparian systems. Global Ecology and Biogeography, 18 (4): 507–520. https://doi.org/10.1111/j.1466-8238.2009.00461.x10.1111/j.1466-8238.2009.00461.x
  10. Davidson, D.W., 1993. The effects of herbivory and granivory on terrestrial plant succession. Oikos, 68 (1): 23–35. https://doi.org/10.2307/354530510.2307/3545305
  11. de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J.H., Bardgett, R.D., Berg, M.P., Cipriotti, P., Feld, C.K., Hering, D., et al., 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity Conservation, 19 (10): 2873–2893. https://doi.org/10.1007/s10531-010-9850-910.1007/s10531-010-9850-9
  12. Denegri, A., Toranzo, L., Rubenacker, A., Campitelli, P., Karlin, M.S., 2014. Efecto de los incendios forestales sobre las propiedades del suelo [Effect of wildfires over soil properties]. NEXO Agropecuario, 2 (1-2): 10–14.
  13. Di Rienzo, J., Casanoves, F., González, L., Tablada, M., Robledo, C., Balzarini, M., 2019. Infostat. Statistical software. Córdoba: Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias.
  14. Dohn, J., Dembélé, F., Karembé, M., Moustakas, A., Amévor, K.A., Hanan, N.P., 2013. Tree effects on grass growth in savannas: competition, facilitation and the stress-gradient hypothesis. Journal of Ecology, 101 (1): 202–209. https://doi.org/10.1111/1365-2745.1201010.1111/1365-2745.12010
  15. Du Rietz, G.E., 1931. Life-forms of terrestrial flowering plants, I. Acta Phytogeographica Suecica, 3. Uppsala: Almquist & Wiksells boktryckeri. 96 p.
  16. February, E.C., Higgins, S.I., Bond, W.J., Swemmer, L., 2013. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology, 94 (5): 1155–1164. https://doi.org/10.1890/12-0540.110.1890/12-0540.123858655
  17. Giorgis, M.A., Cingolani, A.M., Gurvich, D.E., Tecco, P.A., Chiapella, J., Chiarini, F., Cabido, M., 2017. Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Applied Vegetation Science, 20 (4): 558–571. https://doi.org/10.1111/avsc.1232410.1111/avsc.12324
  18. Gittins, C., Ghermandi, L., Bran, D., 2011. Studying the post-fire performance of tussock grasses in Patagonia: survival, biomass production and early competition. Journal of Arid Environments, 75 (11): 986–990. https://doi.org/10.1016/j.jaridenv.2011.05.00510.1016/j.jaridenv.2011.05.005
  19. Guo, Q., Kato, M., Ricklefs, R.E., 2003. Life history, diversity and distribution: a study of Japanese pteridophytes. Ecography, 26 (2): 129–138. https://doi.org/10.1034/j.1600-0587.2003.03379.x10.1034/j.1600-0587.2003.03379.x
  20. Jørgensen, S.E., Svirezhev, Y.M., 2004. Towards a thermodynamic theory for ecological systems. Amsterdam: Elsevier Ltd. 380 p.10.1016/B978-008044166-5/50009-4
  21. Justus, J., 2008. Ecological and Lyapunov stability. Philosophy of Science, 75: 421–436. https://doi.org/10.1086/59583610.1086/595836
  22. Kardol, P., Martijn Bezemer, T., Van Der Putten, W.H., 2006. Temporal variation in plant–soil feedback controls succession. Ecology Letters, 9 (9): 1080–1088. https://doi.org/10.1111/j.1461-0248.2006.00953.x10.1111/j.1461-0248.2006.00953.x16925657
  23. Karlin, M.S., Arnulphi, S., Alday, A., Bernasconi Salazar, J., Accietto, R., 2016. Revegetación post-incendio en matorrales de Acacia spp. en las Sierras of Córdoba, Argentina Central [Post-fire revegetation in Acacia spp. shrublands in Sierras of Córdoba, Central Argentina]. Oecologia Australis, 20 (4): 464–476. https://doi.org/10.4257/oeco.2016.2004.0610.4257/oeco.2016.2004.06
  24. Karlin, M.S., Bachmeier, O.A., Dalmasso, A., Sayago, J.M., Sereno, R., 2011. Environmental dynamics in Salinas Grandes, Catamarca, Argentina. Arid Land Research and Management, 25 (4): 328–350. https://doi.org/10.1080/15324982.2011.60217610.1080/15324982.2011.602176
  25. Karlin, M.S., Bernasconi Salazar, J., Cora, A., Sánchez, S., Arnulphi, S., Accietto, R., 2019. Cambios en el uso del suelo: capacidad de infiltración en el centro de Córdoba (Argentina) [Changes in soil use: infiltration capacity in the center of Córdoba (Argentina)]. Ciencia del Suelo 37 (2): 196–208.10.31047/1668.298x.v37.n1.28068
  26. Karlin, M.S., Galán, R., Contreras, A., Zapata, R., Coirini, R., Ruiz Posse, E., 2013. Exergetic model of secondary successions for plant communities in Arid Chaco (Argentina). ISRN Biodiversity, 2013. https://doi.org/10.1155/2013/94519010.1155/2013/945190
  27. Karlin, M.S., Ontibero, F., Arnulphi, S.A., Bernasconi Salazar, J., 2018. Caracterización edafológica de la Reserva Natural de la Defensa La Calera, Córdoba (Argentina) [Edaphic characterization of the Natural Reserve of the Defence La Calera, Córdoba (Argentina)]. Multequina, 27: 5–22.
  28. Karlin, M.S., Schneider, C., Rufini, S., Bernasconi Salazar, J., Accietto, R., Karlin, U., Ferreyra, Y., 2014. Caracterización florística de la Reserva Natural Militar Estancia La Calera [Floristic characterization of the Natural Military Reserve Estancia La Calera]. Nature and Conservation, 7 (1): 6–18. https://doi.org/10.6008/SPC2318-2881.2014.001.000110.6008/SPC2318-2881.2014.001.0001
  29. Maestre, F.T., Callaway, R.M., Valladares, F., Lortie, C.J., 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97 (2): 199–205. https://doi.org/10.1111/j.1365-2745.2008.01476.x10.1111/j.1365-2745.2008.01476.x
  30. McCarron, J.K., Knapp, A.K., 2003. C3 shrub expansion in a C4 grassland: positive post-fire responses in resources and shoot growth. American Journal of Botany, 90 (10): 1496–1501. https://doi.org/10.3732/ajb.90.10.149610.3732/ajb.90.10.149621659102
  31. Moravec, J., 1969. Succession of plant communities and soil development. Folia Geobotanica et Phytotaxonomica, 4 (2): 133–164. https://doi.org/10.1007/BF0285459910.1007/BF02854599
  32. Naresh Kumar, M., Murthy, C.S., Sesha Sai, M.V.R., Roy, P.S., 2009. On the use of Standardised Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications, 16 (3): 381–389. https://doi.org/10.1002/met.13610.1002/met.136
  33. Nuche, P., Alados, C.L., 2018. Shrub interactions drive vegetation succession of subalpine grasslands under two climatic conditions. Journal of Plant Ecology, 11(2): 297–307. https://doi.org/10.1093/jpe/rtx00210.1093/jpe/rtx002
  34. Schwartsburd, P.B., 2017. Flora of Espírito Santo: Dennstaedtiaceae. Rodriguésia, 68 (5): 1559–1575. https://doi.org/10.1590/2175-786020176850410.1590/2175-7860201768504
  35. Torres, R.C., Giorgis, M.A., Trillo, C., Volkmann, L., Demaio, P., Heredia, J., Renison, D., 2014. Post-fire recovery occurs overwhelmingly by resprouting in the Chaco Serrano forest of Central Argentina. Austral Ecology, 39 (3): 346–354. https://doi.org/10.1111/aec.1208410.1111/aec.12084
  36. Ulrich, W., Zaplata, M.K., Winter, S., Fischer, A., 2019. Directional changes of species spatial dispersion and realised environmental niches drive plant community assembly during early plant succession. Journal of Plant Ecology, 12 (3): 409–418. https://doi.org/10.1093/jpe/rty03810.1093/jpe/rty038
  37. Wikum, D.A., Shanholtzer, G.F., 1978. Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. Environment Management, 2 (4): 323–329. https://doi.org/10.1007/BF0186667210.1007/BF01866672
  38. Zeballos, S.R., Giorgis, M.A., Cingolani, A.M., Cabido, M., Whitworth-Hulse, J.I., Gurvich, D.E., 2014. Do alien and native tree species from Central Argentina differ in their water transport strategy? Austral Ecology, 39 (8): 984–991. https://doi.org/10.1111/aec.1217110.1111/aec.12171
  39. Zhu, S.D.., Li, R.H., Song, J., He, P.C., Liu, H., Berninger, F., Ye, Q., 2016. Different leaf cost–benefit strategies of ferns distributed in contrasting light habitats of sub-tropical forests. Annals of Botany, 117 (3): 497–506. https://doi.org/10.1093/aob/mcv17910.1093/aob/mcv179476553826684751
DOI: https://doi.org/10.2478/foecol-2021-0002 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 9 - 24
Submitted on: Jul 28, 2020
Accepted on: Nov 27, 2020
Published on: Mar 1, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Marcos Sebastián Karlin, Sebastián Abel Arnulphi, Javier Rodolfo Bernasconi Salazar, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.