Have a personal or library account? Click to login
Genotype-specific requirements for in vitro culture initiation and multiplication of Magnolia taxa Cover

Genotype-specific requirements for in vitro culture initiation and multiplication of Magnolia taxa

Open Access
|May 2020

References

  1. Amoo, S.O., Finnie, J.F., Van Staden, J., 2011. The role of meta-topolins in alleviating micropropagation problems. Plant Growth Regulation, 63: 197–206.10.1007/s10725-010-9504-7
  2. Anderson, W.C., 1980. Tissue culture propagation of red and black raspberries, Rubus idaeus and R. occidentalis. Acta Horticuluturae, 112: 13–20.10.17660/ActaHortic.1980.112.1
  3. Arnaldos, T.L., Munoz, R., Ferrer, M.A., Calderon, A.A., 2001. Changes in phenol content during strawberry (Fragaria × ananasa, cv. Chandler) callus culture. Physiologia Plantarum, 113: 315–322.10.1034/j.1399-3054.2001.1130303.x
  4. Bairu, M.W., Stirk, W.A., Dolezal, K., Van Staden, J., 2007. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell, Tissue, and Organ Culture, 90: 15–23.10.1007/s11240-007-9233-4
  5. Barbehenn, R.V., Constabel, C.P., 2011. Tannins in plantherbivore interactions. Phytochemistry, 72: 1551–1565.10.1016/j.phytochem.2011.01.040
  6. Benson, E., 2000. Do free radicals have role in plant tissue culture recalcitrance? Vitro Cellular and Developmental Biology - Plant, 36: 163–170.10.1007/s11627-000-0032-4
  7. Bhattacharyya, P., Kumaria, S., Diengdoh, R., Tandon, P., 2014. Genetic stability and phytochemical analysis of the in vitro regenerated plants Dendrobium nobile Lindl., an endangered medicinal orchid. Meta Gene, 2: 489–504.10.1016/j.mgene.2014.06.003
  8. Bi, Y., Gao, S., Qiao, Y., Liu, S., Cao, H., Zhang, H., 2002. Effect of plant growth regulator on tissue culture of Mongolian white yulan. Journal of Hebei Vocation Technical Teachers College, 16:14–15.
  9. Biederman, I.E.G., 1987. Factors affecting establishment and development of Magnolia hybrids in vitro. Acta Horticulturae, 212: 625–630.10.17660/ActaHortic.1987.212.104
  10. Callaway, D.J., 1994. The world of magnolias. Portland: Timber Press. 260 p.
  11. Chée, R., Pool, R.M., 1987. Improved inorganic media constituents for in vitro shoot multiplication of Vitis vinifera. Scientia Horticulturae, 32: 85–95.10.1016/0304-4238(87)90019-7
  12. Constabel, C.P., Yoshida, K., Walker, W., 2014. Diverse ecological roles of plant tannins: plant defence and beyond. In Romani, A., Lattanzio, V., Quideau, S. (eds). Recent advances in polyphenol research. Vol. 4. Oxford: John Wiley & Sons, p. 115–142.10.1002/9781118329634.ch5
  13. Figlar, R B., Nooteboom, H.P., 2004. Notes on Magnoliaceae IV. Blumea, 49: 1–14.10.3767/000651904X486214
  14. Filová, A., Konôpková, J., Bošiaková, D., 2018a. Characterization of growth and development of explantate cultures for Magnolia liliiflora Desr. and Liriodendron tulipifera L. ‘Auromarginatum’. In Recenzovaný zborník vedeckých prác Slovenskej spoločnosti pre poľnohospodárske, lesnícke, potravinárske a veterinárske vedy pri Slovenskej akadémii vied, pobočka Nitra. Nitra: Slovenská poľnohospodárska univerzita, p. 109–117.
  15. Filová, A., Konôpková, J., Bošiaková, D., 2018b. Morfologicko-anatomické zmeny explantátovej kultúry Magnolia × soulangiana v podmienkach nadbytku iónov Al3+ a Ca2+ [Morphological-anatomical changes of explantate culture of Magnolia × soulangiana in conditions of elevated Al3+ and Ca2+]. In Vliv abiotických a biotických stresorů na vlastnosti rostlin 2018: sborník recenzovaných vědeckých prací. Praha, Zvolen: Česká zemědelská univerzita v Praze, Ústav ekológie lesa, p. 78–83.
  16. Furlan, C.M., Motta, L.B., Cursinodos Santos, D.Y.A., 2010. Tannins: what do they represent in plant life? In Petridis, G.K. (eds). Tannins: types, foods containing, and nutrition. Nova Science Publishers, p. 1–13.
  17. Gabryszewska, E., 1997. Wplyw tidiazuronu i cytokinin na wzrost a rozwój pedów Magnolia × soulangiana ‘Alexandrina’ in vitro [Influence of tidiazuron and cytokinin on the growth and development in Magnolia × soulangiana ‘Alexandrina’ shoots in vitro]. In Dubert, F., Skoczowski, A. (eds). Zastosowanie kultur in vitro w fizjologii roślin. Kraków: PAN, p. 79–82.
  18. Gamborg, O.L., Miller, R.A., Ojima, K., 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50: 151–158.10.1016/0014-4827(68)90403-5
  19. Gupta, S.D., 2010. Role of free radicals and antioxidants in in vitro morphogenesis. In Gupta, S.D. (eds). Reactive oxygen species and antioxidants in higher plants. Kharagpur: Science Publishers, p. 229–247.
  20. Hoťka, P., Barta, M., 2012. Dreviny Arboréta Mlyňany SAV [Tree species in the Arboretum Mlyňany of the Slovak Academy of Sciences]. Bratislava: Veda. 132 p.
  21. Kamenická, A., Lanáková, M., 2000. Effects of culture medium composition and vessel type on axillary shoot formation of Magnolia in vitro. Acta Physiologiae Plantarum, 22: 129–134.10.1007/s11738-000-0067-5
  22. Kamenická A., Váľka, J., 1997. Cultivation and propagation of magnolias. Zvolen: Ústav ekológie lesa SAV. 99 p.
  23. Kester, D.E., Davies, F.T., Geneve, R.L., 2002. Hartmann and Kester’s plant propagation: principles and practices. Upper Saddle River, New Jersey: Pearson Education. 880 p.
  24. Kolimárová, Ž., Balážová, E., Čemanová, H., Haluška, M., Záborská, Z., Schvalb, M., 2016. Program rozvoja mesta Lučenec 2016–2022 (2025) [Development program 2016–2022 (2025) of the city of Lučenec]. [cit. 2019-11-26]. https://www.lucenec.sk/download_file_f.php?id=810658
  25. Konôpková, J., 2007. Využitie in vitro metód pri rozmnožovaní magnólie soulangovej (Magnolia × soulangiana Soul.-Bod.) v Arboréte Mlyňany SAV [In vitro methods in propagation of the Saucer magnolia (Magnolia × soulangiana Soul-Bod.) in Arboretum Mlyňany SAS]. In Zborník referátov z vedeckej konferencie “Aklimatizácia a introdukcia drevín v podmienkach globálneho otepľovania”. Vieska nad Žitavou: Arborétum Mlyňany SAV, p. 196–203.
  26. Lichtantahler, H.K., 1987. Chlorophylls and carotenoids: photosynthetic biomembranes. Methods in Enzymology, 148: 350–382.10.1016/0076-6879(87)48036-1
  27. Lloyd, G., McCown, B., 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings, International Plant Propagators’ Society, 30: 41–427.
  28. Magic, D., 1986. Map-part Fiľakovo. In Michalko, J., Magic, D., Berta, J. (eds). Geobotanical map of C. S. S. R. Slovak Socialist Republic. Bratislava: Veda. 186 p.
  29. Marinescu, L., Radomir, A.M., Radu, T., Teodorescu, A., Fleancu, M., Popescu, C., 2008. Preliminary results regarding the influence of cytokinin on micropropagation of Magnolia soulangiana. Lucrări Științifice - Universitatea de Științe Agronomice și Medicină Veterinară București. Seria B, Horticultură, 51: 601–607.
  30. Michalko, J., 1986. Map-part Prievidza. In Michalko, J., Magic, D., Berta, J. (eds). Geobotanical map of C. S. S. R. Slovak Socialist Republic. Bratislava: Veda. 186 p.
  31. Ming, L., Huan-Cheng, M.A., 2003. The review of the asexual propagation on Magnoliaceae. Journal of Southwest Forestry College, 23: 92–96.
  32. Mukherjee, S.P., Choudhuri, M.A., 1983. Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 58: 166–170.10.1111/j.1399-3054.1983.tb04162.x
  33. Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.10.1111/j.1399-3054.1962.tb08052.x
  34. Nguyen, P.M., Niemeyer, E.D., 2008. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 56 (18): 8685–8691.10.1021/jf801485u18712879
  35. Nakamura, K., Wakita, Y., Yokota, S., Yoshizawa, N., Idei, T., 1995. Induction of multiple shoots by shoot apex culture in Magnolia obovate Thunb. Plant Tissue Culture Letters, 12 (1): 34–40.10.5511/plantbiotechnology1984.12.34
  36. Osier, T.L., Lindroth, R.L., 2006. Genotype and environment determine allocation to and costs of resistance in quaking aspen. Oecologia, 148: 293–303.10.1007/s00442-006-0373-816468055
  37. Owen, H.R., Miller, A.R., 1992. An examination and correction of plant tissue culture basal medium formulations. Plant Cell, Tissue, and Organ Culture, 28: 147–150.10.1007/BF00055509
  38. Ozden, M., Karaaslan, M., 2011. Effects of cytokinin on callus proliferation associated with physiological and biochemical changes in Vitis vinifera L. Acta Physiologiae Plantarum, 33: 1451–1459.10.1007/s11738-010-0681-9
  39. Park, Y.K., Koo, M.H., Ikegaki, M., Contado, J.L., 1997. Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions in Brazil. Brazilian Archives of Biology and Technology, 40: 97–106.
  40. Parris, J.K., Touchell, D.H., Ranney, T.G., Adelberg, J., 2012. Basal salt composition, cytokinins, and phenolic binding agents influence in vitro growth and ex vitro establishment of Magnolia ‘Ann’. Horticultural Science, 47 (11): 1625–1629.10.21273/HORTSCI.47.11.1625
  41. Polláková, N., 2018. Soils classified in the Arboretum Mlyňany, Slovakia. Folia Oecologica, 45 (2): 120–128.10.2478/foecol-2018-0013
  42. Porter, L.J., 1988. Flavans and proathocyanidins. In Harborne, J.B. (ed). The flavonoids – recent advances in research since 1980. London: Chapman & Hall, p. 21–62.
  43. Pourcel, L., Routaboul, J.M., Cheynier, V. etal., 2007. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12 (1): 29–36.10.1016/j.tplants.2006.11.00617161643
  44. Radomir, A.M., 2012. Comparative study on the in vitro multiplication potential of Magnolia stellate and Magnolia × soulangiana species. Journal of Horticulture, Forestry, and Biotechnology, 16 (2): 39–44.
  45. Samanta, A., Das, G., Das, S.K., 2011. Roles of flavonoids in plants. International Journal of Pharmaceutical Science and Technology, 6 (1): 12–35.
  46. Sokolov, R.S., Atanassova, B.Y., Iakimova, E.T., 2014. Physiological response of in vitro cultured Magnolia sp. to nutrient medium composition. Journal of Horticultural Research, 22 (1): 49–61.10.2478/johr-2014-0006
  47. Standardi, A., Catalano, F., 1985. Tissue culture propagation of kiwifruit. Combined Proceedings, International Plant Propagators’ Society, 34: 236–243.
  48. Tábor, I., Pavlačka, R., 1992. Arborétum Mlyňany – Sprievodca po Arboréte [Arboretum Mlyňany – arboretum guide]. Bratislava: Veda. 62 p.
  49. Takahashi, A., Ohnishi, T. 2004. The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the internal space station. Biological Science in Space, 18 (4): 255–260.10.2187/bss.18.25515858393
  50. Tong, Z., Zhu, Y., Wang, Z., 2002. Studies on tissue culture and the establishment of a high-yield cell line of Magnolia officinalis. Journal Forestry University of Nanjing, 26: 23–26.
  51. Úkzúz, 2013. Stanovení obsahu taninů v čiroku spektrofotometricky [Spectrometric determination of tannin content in sorghum]. [cit. 2019-11-26]. http://eagri.cz/public/web/file/255266/_50321._1_Stan__obs__taninu_v_ciroku_spektrofotometricky.pdf
  52. Wojtania, A., Skrzypek, E., Gabryszevska, E., 2015. Effect of cytokinin, sucrose, and nitrogen salts concentrations on the growth and development and phenolics content in Magnolia × soulangiana ‘Coates’ shoots in vitro. Acta Scientarum Polonorum Hortorum Cultus, 14 (3): 51–62.
  53. Yao, L.H., Jiang, Y.M., Shi, J. etal. 2004. Flavonoids in food and their health benefits. Plant Foods and Human Nutrition, 59: 113–122.10.1007/s11130-004-0049-7
DOI: https://doi.org/10.2478/foecol-2020-0005 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 34 - 44
Submitted on: Dec 20, 2019
|
Accepted on: Mar 13, 2020
|
Published on: May 13, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Jana Konôpková, Dominika Košútová, Peter Ferus, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.