Have a personal or library account? Click to login
Functional diversity of soil microorganisms in the conditions of an ecological farming system Cover

Functional diversity of soil microorganisms in the conditions of an ecological farming system

Open Access
|Dec 2019

References

  1. Act No. 220/2004 Coll. on protection and use of agricultural soil (in Slovak Zákon č. 220/2004 o ochrane a využívaní poľnohospodárskej pôdy). National Council of the Slovak Republic.
  2. Avellaneda-Torres, L.M., León Sicard, T.E., Torres Rojas, E., 2018. Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils. Science of the Total Environment, 631–632: 1600–1610.10.1016/j.scitotenv.2018.03.137
  3. Bardgett, R.D., 2005. The biology of soil. Oxford: Oxford University Press. 242 p.10.1093/acprof:oso/9780198525035.001.0001
  4. Bardgett, R.D., Van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature, 515: 505–511.10.1038/nature13855
  5. Bender, S.F., Wang, C., Van der Heijden, M.G.A., 2016. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 31 (6): 440–452.10.1016/j.tree.2016.02.016
  6. Bondi, G., Creamer, R., Ferrari, Fenton, O., Wall, D., 2018. Using machine learning to predict soil bulk density on the basis of visual parameters: tools for in-field and post-field evaluation. Geoderma, 318: 137–147.10.1016/j.geoderma.2017.11.035
  7. Choudhary, M., Jat, H.S., Datta, A., Yadav, A.K., Sapkot, T.B., Mondal, S., Meena, R.P., Sharma, P.C., Jat, M.L., 2018. Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems. Applied Soil Ecology, 126: 189–198.10.1016/j.apsoil.2018.02.027
  8. Čurlík, J., Šefčík, P., 1999. Geochemický atlas Slovenskej republiky [Geochemical atlas of the Slovak Republic]. Bratislava: Ministerstvo životného prostredia Slovenskej republiky.
  9. Doran, J.W., Zeiss, M.R., 2000. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15 (1): 3–11.10.1016/S0929-1393(00)00067-6
  10. Duguma, L.A, Hager, H., Sieghardt, M., 2010. Effects of land use types on soil chemical properties in smallholder farmers of central highland Ethiopia. Ekológia (Bratislava), 29 (1): 1−14.10.4149/ekol_2010_01_1
  11. Fazekašová, D., 2012. Evaluation of soil quality parameters development in terms of sustainable land use. In Curkovic S. (ed.). Sustainable development – authoritative and leading edge content for environmental management. Rijeka: InTech, p. 435-458.10.5772/48686
  12. Fiala, K., Barančiková, G., Brečková, V., Burik, V., Houšková, B., Chomaničová, A., Kobza, J., Litavec, T., Makovniková, L., Pechova, B., Varadiová, D., 1999. Záväzné metódy rozborov pôd. Čiastkový monitorovací system – Pôda [Obligatory methods of soil analysis. Partial monitoring system – Soil]. Bratislava: VÚPOP. 142 p.
  13. Gałązka A., Gawryjołek K., Grządziel J., Frąc M., Księżak J., 2017. Microbial community diversity and the interaction of soil under maize growth in different cultivation techniques. Plant, Soil and Environment, 63: 264–270.10.17221/171/2017-PSE
  14. Gałązka A., Gawryjołek K., Grządziel J., Księżak J., 2017. Effect of different agricultural management practices on soil biological parameters including glomalin fraction. Plant, Soil and Environment, 63: 300–306.10.17221/207/2017-PSE
  15. Garland, J.L., 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbial Ecology, 24: 289–300.10.1111/j.1574-6941.1997.tb00446.x
  16. Garland, J.L., Mills, A.L., 1991. Classification and char-acterisation of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source-utilization. Applied and Environmental Microbiology, 57: 2351–2359.10.1128/aem.57.8.2351-2359.199118357516348543
  17. Gömöryová, E., Tóthová, S., Pichler, V., Homolák, M., Kriššák, V., Gömöry, D., 2016. Wood ash effect on chemical and microbiological properties of topsoil in a Norway spruce stand one year after the treatment. Folia Oecologica, 43: 156–163.
  18. Hofman, J., Švihálek, J., Holoubek, I., 2004. Evaluation of functional diversity of soil microbial communities – a case study. Plant, Soil and Environment, 50: 141–148.10.17221/4074-PSE
  19. Hohl, H., Varma, A., 2010. Soil: the living matrix. In Sherameti, I., Varma, A. (eds). Soil heavy metals. Soils Biology, 19. Berlin Heidelberg: Springer-Verlag, p. 1–19.10.1007/978-3-642-02436-8_1
  20. Klimatický atlas Slovenska.Climate atlas of Slovakia, 2015. Bratislava: Slovenský hydrometeorologický ústav. 132 p.
  21. Liao, M., Xie, X., 2007. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area, Ecotoxicology and Environmental Safety, 66: 217–223.10.1016/j.ecoenv.2005.12.01316488009
  22. Líška, E., Bajla, J., Candráková, E., Frančák, J., Hrubý, D., Illeš, L., Korenko, M., Nozdrovický, L., Pospišil, R., Špánik, F., Žembery, J., 2008. Všeobecná rastlinná výroba [General crop production]. Nitra: Slovenská poľnohospodárska univerzita. 452 p.
  23. Macci, C., Doni, S., Peruzzi, E., Masciandaro, G., Men-none, C., Ceccanti, B., 2012. Almond tree and organic fertilization for soil quality improvement in southern Italy. Journal of Environmental Management, 95: 215–222.10.1016/j.jenvman.2010.10.05021074934
  24. Makovníková, J., Barančíková, G., Dlapa, P., Dercová, K., 2006. Anorganické kontaminanty v pôdnom ekosystéme [Inorganic contaminants in the soil environment]. Chemické Listy, 100: 424–432.
  25. Mazúr, E., Lukniš, M., 1980. Regionálne geomorfologické členenie SSR [Regional geomorphological division of the Slovak Socialist Republic]. Bratislava: SAV, p. 54–55.
  26. Meena, B.P., Biswas, A.K., Muneshwar Singh, Chaudhary, R.S., Singh, A.B. Das, H., Patra, A.K., 2019. Long-term sustaining crop productivity and soil health in maize–chickpea system through integrated nutrient management practices in Vertisols of central India. Field Crops Research, 232: 62–76.10.1016/j.fcr.2018.12.012
  27. Pagliai, M., Vignozzi, N., 2002. The soil pore system as an indicator of soil quality. Advances in GeoEcology, 35: 71–82.
  28. Premrov, A., Cummins, T., Byrne, K.A., 2017. Bulk-density modelling using optimal power-transformation of measured physical and chemical soil parameters. Geoderma, 314: 205–220.10.1016/j.geoderma.2017.10.060
  29. Romaniuk, R., Giuffre, L., Costantini, A., Bartoloni, N., Nannipieri, P., 2011. A comparison of indexing methods to evaluate quality of soils: The role of soil microbiological properties. Soil Research, 49: 733–741.10.1071/SR11147
  30. Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4 (10): 1340–51.10.1038/ismej.2010.58
  31. Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal, 27: 379–423.10.1002/j.1538-7305.1948.tb01338.x
  32. Shen, C., Xiong, J., Zhang, H., Feng, Y., Lin, X., Li, X., Liang, W., Chu, H., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57: 204–211.10.1016/j.soilbio.2012.07.013
  33. Tischer, S., Tannaberg, H., Guggenberger, G., 2008. Microbial parameters of soils contaminated with heavy metals: assessment for ecotoxicological monitoring. Polish Journal of Ecology, 56: 471–479.
  34. Torsvik, V., Øvreås, L., 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5: 240–245.10.1016/S1369-5274(02)00324-7
  35. Vincent, Q., Leyval, C., Beguiristain, T., Auclerc, A., 2018. Functional structure and composition of Collembola and soil macrofauna communities depend on abiotic parameters in derelict soils. Applied Soil Ecology, 130: 259–270.10.1016/j.apsoil.2018.07.002
  36. Walmsley, A., Sklenička, P., 2017. Various effects of land tenure on soil biochemical parameters under organic and conventional farming − Implications for soil quality restoration. Ecological Engineering, 107: 137–143.10.1016/j.ecoleng.2017.07.006
  37. Yang, Ch., Liu, N., Zhang, Y., 2019. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma, 337: 444–452.10.1016/j.geoderma.2018.10.002
  38. Yao, H., He, Z., Wilson, M.J., Campbell, C.D., 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use, Microbial Ecology, 40: 223–237.10.1007/s00248000005311080380
  39. Zhu, L., Xiao, Q., Shen, Y., Li, S., 2017. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the loess Plateau. Ecotoxicology and Environmental Safety, 144: 578–584.10.1016/j.ecoenv.2017.06.07528688360
DOI: https://doi.org/10.2478/foecol-2019-0017 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 146 - 152
Submitted on: Mar 14, 2019
Accepted on: Jul 10, 2019
Published on: Dec 21, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Danica Fazekašová, Juraj Fazekaš, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.