Have a personal or library account? Click to login
Tree canopy affects soil macrofauna spatial patterns on broad- and meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro Cover

Tree canopy affects soil macrofauna spatial patterns on broad- and meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro

Open Access
|Dec 2019

References

  1. Aiba, M., Takafumi, H., Hiura, T., 2012. Interspecific differences in determinants of plant species distribution and the relationships with functional traits. Journal of Ecology, 100: 950–957. https://doi.org/10.1111/j.1365-2745.2012.01959.x10.1111/j.1365-2745.2012.01959.x
  2. Andivia, E., Fernández, M., Alejano, R., Vázquez-Piqué, J., 2015. Tree patch distribution drives spatial heterogeneity of soil traits in cork oak woodlands. Annals of Forest Science, 72: 549–559. https://doi.org/10.1007/s13595-015-0475-810.1007/s13595-015-0475-8
  3. Bahram, M., Kohout, P., Anslan, S., Harend, H., Abarenkov, K., Tedersoo, L., 2016. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. The ISME Journal, 10 (4): 885–896. https://doi.org/10.1038/ismej.2015.16410.1038/ismej.2015.164
  4. Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature, 515 (7528): 505–511. https://doi.org/10.1038/nature1385510.1038/13855
  5. Barton, P. S., Cunningham, S.A., Manning, A.D., Gibb, H., Lindenmayer, D.B., Didham, R.K., 2013. The spatial scaling of beta diversity. Global Ecology and Biogeography, 22 (6): 639–647. https://doi.org/10.1111/geb.1203110.1111/geb.12031
  6. Berg, M. P., Bengtsson, J., 2007. Spatial and temporal variation in food web composition. Oikos, 116: 1789–804. https://doi.org/10.1111/j.0030-1299.2007.15748.x10.1111/j.0030-1299.2007.15748.x
  7. Blanchet, F.G., Legendre, P., Borcard, D., 2008. Forward selection of explanatory variables. Ecology, 89 (9): 2623–2632. https://doi.org/10.1890/07-0986.110.1890/07-0986.1
  8. Borcard, D., Legendre, P., 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153: 51–68. https://doi.org/10.1016/S0304-3800(01)00501-410.1016/S0304-3800(01)00501-4
  9. Bratton, S., 1976. Resource division in an understory herb community: responses to temporal and microtopographic gradients. The American Naturalist, 110 (974): 679–693. [cit. 2019-05-02]. www.jstor.org/stable/2459584.10.1086/283097
  10. Breshears, D., Rich, P., Barnes, F., Campbell, K., 1997. Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecological Applications, 7 (4): 1201–1215. https://doi.org/10.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;210.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;2
  11. Buzuk, G. N., 2017. Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2 (76): 31–37.
  12. Callaham, Jr., M.A., Richter, Jr., D.D., Coleman, D.C., Hofmockel, M., 2006. Long-term land-use effects on soil invertebrate communities in Southern Piedmont soils, USA. European Journal of Soil Biology, 42 (1): S150–S156. https://doi.org/10.1016/j.ejsobi.2006.06.00110.1016/j.ejsobi.2006.06.001
  13. Cesarz, S., Fahrenholz, N., Migge-Kleian, S., Platner, C., Schaefer, M., 2007. Earthworm communities in relation to tree diversity in a deciduous forest. European Journal of Soil Biology, 43 (1): S61–S67. https://doi.org/10.1016/j.ejsobi.2007.08.00310.1016/j.ejsobi.2007.08.003
  14. Chang, L., Zeleny, D., Li, C., Chiu, S., Hsieh, C., 2013. Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94: 2145–2151. https://doi.org/10.1890/12-2053.110.1890/12-2053.1
  15. Chase, J.M., 2014. Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science, 25: 319–322. https://doi.org/10.1111/jvs.1215910.1111/jvs.12159
  16. Chen, B., Wise, D.H., 1999. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology, 80: 761–772. https://doi.org/10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;210.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2
  17. Chudomelová, M., Zelený, D., Li, Ch.-F., 2017. Contrasting patterns of fine-scale herb layer species composition in temperate forests. Acta Oecologica, 80: 24–31. https://doi.org/10.1016/j.actao.2017.02.00310.1016/j.actao.2017.02.003
  18. De Cáceres, M., Legendre, P., Valencia, R., Cao, M., Chang, L.W., Chuyong, G., Kenfack, D., 2012. The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 21 (12): 1191–1202. https://doi.org/10.1111/j.1466-8238.2012.00770.x10.1111/j.1466-8238.2012.00770.x
  19. Decaens, T., Dutoit, T., Alard, D., Lavelle, P., 1998. Factors influencing soil macrofaunal communities in post–pastoral successions of western France. Applied Soil Ecology, 9: 361–367. https://doi.org/10.1016/S0929-1393(98)00090-010.1016/S0929-1393(98)00090-0
  20. Didukh, Y.P., 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre. 176 p.
  21. Dini-Andreote, F., Stegen, J.C., Van Elsas, J.D., Salles, J.F., 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 112 (11): E1326–E1332. https://doi.org/10.1073/pnas.141426111210.1073/pnas.1414261112
  22. Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., Wagner, H.H., 2018. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-2. https://CRAN.R-project.org/package=adespatial
  23. Dumbrell, A. J., Nelson, M., Helgason, T., Dytham, C., Fitter, A.H., 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal, 4 (3): 337–345. https://doi.org/10.1038/ismej.2009.12210.1038/ismej.2009.122
  24. Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balík, V., Kalčík, J., Řehounková, K., 2008. Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44: 109–121. https://doi.org/10.1016/j.ejsobi.2007.09.00210.1016/j.ejsobi.2007.09.002
  25. Ge, Z., Fang, S., Chen, H.Y.H., Zhu, R., Peng, S., Ruan, H., 2018. Soil aggregation and organic carbon dynamics in poplar plantations. Forests, 9 (9): 508. https://doi.org/10.3390/f909050810.3390/f9090508
  26. Gholami, S., Sayad, E., Gebbers, R., Schirrmann, M ., Joschko, M., Timmer, J., 2016. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia, 59 (1): 27–36. https://doi.org/10.1016/j.pedobi.2015.12.00310.1016/j.pedobi.2015.12.003
  27. Gholami, S., Sheikhmohamadi, B., Sayad, E., 2017. Spatial relationship between soil macrofauna biodiversity and trees in Zagros forests, Iran. Catena, 159: 1–8. https://doi.org/10.1016/j.catena.2017.07.021.10.1016/j.catena.2017.07.021
  28. Graefe. U., Beylich, A., 2003. Critical values of soil acidification for annelid species and the decomposer community. Newsletter on Enchytraeidae, 8: 51–55.
  29. Hanson, C.A., Fuhrman, J.A., Horner-Devine, M.C., Martiny, J.B., 2012. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nature Reviews Microbiology, 10 (7): 497. https://doi.org/10.1038/nrmicro279510.1038/nrmicro279522580365
  30. Hooper, D.U., Vitousek, P.M., 1997. The effects of plant composition and diversity on ecosystem processes. Science, 277: 1302–1305. doi: 10.1126/science.277.5330.130210.1126/.277.5330.1302
  31. Hunter, M.D., Price, P.W., 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73: 724–732. https://doi.org/10.2307/194015210.2307/1940152
  32. Igondová, E., Majzlan, O., 2015. Assemblages of ground beetles (Carabidae, Coleoptera) in peatland habitat, surrounding dry pine forests and meadows. Folia Oecologica, 42: 21–28.
  33. Jimenez, J.J., Decaens, T., Rossi, J.P., 2006. Stability of the spatio-temporal distribution and niche overlap in neo-tropical earthworm assemblages. Acta Oecologica, 30: 299–311. https://doi.org/10.1016/j.actao.2006.06.00810.1016/j.actao.2006.06.008
  34. Jiménez, J.J., Decaëns, T., Rossi, J.-P., 2012. Soil environmental heterogeneity allows spatial co–occurrence of competitor earthworm species in a gallery forest of the Colombian “Llanos”. Oikos, 121: 915–926. https://doi.org/10.1111/j.1600-0706.2012.20428.x10.1111/j.1600-0706.2012.20428.x
  35. Jones, M.M., Tuomisto, H., Clark, D.B., Olivas, P., 2006. Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rainforest ferns. Journal of Ecology, 94: 181–195. https://doi.org/10.1111/j.1365-2745.2005.01071.x10.1111/j.1365-2745.2005.01071.x
  36. Karunaratne, S., Singh, B., Robinson, L., Campbell, C., Yao, H., Powell, J., 2015. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications, 6 (1): 1–10. https://doi.org/10.1038/ncomms944410.1038/ncomms9444
  37. King, A. W., With, K. A., 2002. Dispersal success on spatially structured landscapes: when do spatial pattern and dispersal behavior really matter? Ecological Modelling, 147 (1): 23–39. https://doi.org/10.1016/S0304-3800(01)00400-8.10.1016/S0304-3800(01)00400-8
  38. Krivolutsky, D.A., 1994. Pochvennaja fauna v jekologicheskom kontrole [Soil fauna in ecological control]. Moscow: Nauka. 240 p.
  39. Lavelle, P., Senapati, B., Barros, E., 2003. Soil macrofauna. In Schroth, G., Sinclair, F.L. (eds). Trees, crops and soil fertility: concepts and research methods. Wall-ingford: CAB International, 2003, p. 303–323.10.1079/9780851995939.0303
  40. Lazorík, M., Kula, E., 2015. Impact of weather and habitat on the occurrence of centipedes, millipedes and terrestrial isopods in mountain spruce forests. Folia Oecologica, 42: 103–112.
  41. Legendre, P., Borcard, D., Peres-Neto, P.R., 2005. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75: 435–450. https://doi.org/10.1890/05-054910.1890/05-0549
  42. Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species. Oecologia, 129 (2): 271–280. https://doi.org/10.1007/s00442010071610.1007/s00442010071628547606
  43. Legendre, P., Legendre, L., 2012. Numerical ecology. Third English edition. Amsterdam, NL: Elsevier Science. 1006 p.
  44. Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.–F., He, F., 2009. Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology, 90: 663–674. https://doi.org/10.1890/07-1880.110.1890/07-1880.119341137
  45. Lososová, Z., Šmarda, P., Chytrý, M., Purschke, O., Pyšek, P., Sádlo, J., Tichý, L., Winter, M., 2015. Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. Journal of Vegetation Science, 26: 1080–1089. https://doi:10.1111/jvs.1230810.1111/jvs.12308
  46. Mathieu, J., Grimaldi, M., Jouquet, P., Rouland, C., Lavelle, P., Desjardins, T., Rossi, J. P., 2009. Spatial patterns of grasses influence soil macrofauna biodiversity in Amazonian pastures. Soil Biology & Biochemistry, 41: 586–593. https://doi:10.1016/j.soilbio.2008.12.02010.1016/j.soilbio.2008.12.020
  47. Mathieu, J., Rossi, J.P., Grimaldi, M., Mora, P., Lavelle, P., Rouland, C., 2004. A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. Biology and Fertility of Soils, 40: 300–305. https://doi.org/10.1007/s00374-004-0777-810.1007/s00374-004-0777-8
  48. Mitchell, R.J., Campbell, C.D., Chapman, S.J., Osler, G.H.R., Vanbergen, A.J., Ross, L.C., Cameron, C.M., Cole, L., 2007. The cascading effects of birch on heather moorland: a test for the top-down control of an ecosystem engineer. Journal of Ecology, 95: 540–554. https://doi:10.1111/j.1365-2745.2007.01227.x10.1111/j.1365-2745.2007.01227.x
  49. Mölder, A., Bernhardt-Römermann, M., Schmidt, W., 2008. Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? Forest Ecology and Management, 256 (3): 272–281. https://doi.org/10.1016/j.foreco.2008.04.01210.1016/j.foreco.2008.04.012
  50. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2018. Community Ecology Package. R package version 2.5-2. [cit.2019-04-03]. https://CRAN.R-project.org/package=vegan
  51. Peay, K.G., Garbelotto, M., Bruns, T.D., 2010. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology, 91 (12): 3631–3640. https://doi.org/10.1890/09-2237.110.1890/09-2237.1
  52. Polláková, N., Šimanský, V., Jonczak, J., 2017. Characteristics of physical properties in soil profiles under selected introduced trees in the Nature Reserve Arboretum Mlyňany, Slovakia. Folia Oecologica, 44: 78–86. https://doi.org/10.1515/foecol-2017-001010.1515/foecol-2017-0010
  53. Ponsard, S., Arditi, R., Jost, C., 2000. Assessing top-down and bottom-up control in a litter-based soil macroin-vertebrate food chain. Oikos, 89: 524–540. https://doi.org/10.1034/j.1600-0706.2000.890312.x10.1034/j.1600-0706.2000.890312.x
  54. Powell, J.R., Karunaratne, S., Campbell, C.D., Yao, H., Robinson, L., Singh, B.K., 2015. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications, 6: 8444. https://doi.org/10.1038/ncomms944410.1038/ncomms9444
  55. Power, M. E., 1992. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology, 73: 733–746. doi: 10.2307/194015310.2307/1940153
  56. Rao, C.R., 1964. The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics. Series A, 26: 329–358. [cit. 2019-04-19]. https://www.jstor.org/stable/25049339
  57. Saetre, P., 1999. Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 22: 183–192. https://doi.org/10.1111/j.1600-0587.1999.tb00467.x10.1111/j.1600-0587.1999.tb00467.x
  58. Sağlam, M., Dengiz, O., 2017. Spatial variability of soil penetration resistance in an alluvial delta plain under different land uses in middle Black Sea Region of Turkey. Archives of Agronomy and Soil Science, 63 (1): 60–73. https://doi.org/10.1080/03650340.2016.117838610.1080/03650340.2016.1178386
  59. Scheu, S., Schaefer, M., 1998. Bottom-up control of the soil macrofauna community in a beechwood on limestone: manipulation of food resources. Ecology, 79: 1573–1585. https://doi.org/10.1890/0012-9658(1998)079[1573:BUCOTS]2.0.CO;210.1890/0012-9658(1998)079[1573:BUCOTS]2.0.CO;2
  60. Shaw, D.C., Bible, K., 1996. An overview of forest canopy ecosystem function with reference to urban riparian systems. Northwest Science, 70: 1–5.
  61. Stašiov, S., Svitok, M., 2014. The influence of stand density on the structure of centipede (Chilopoda) and millipede (Diplopoda) communities in the submountain beech forest. Folia Oecologica, 41: 195–201.
  62. Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7 (11): 2069. https://doi.org/10.1038/ismej.2013.9310.1038/ismej.2013.93
  63. Thoms, M. C., 2003. Floodplain-river ecosystems: lateral connections and the implications of human interference. Geomorphology, 56: 335–349. https://doi.org/10.1016/S0169-555X(03)00160-010.1016/S0169-555X(03)00160-0
  64. Tian, G., Olimah, J.A., Adeoye, G.O., Kang, B.T., 2000. Regeneration of earthworm populations in a degraded soil by natural and planted fallows under humid tropical conditions. Soil Science Society of America Journal, 64 (1): 222–228. doi: 10.2136/sssaj2000.641222x10.2136/sssaj2000.641222x
  65. Vadunina, A.F., Korchagina, S.A., 1986. Metody issledovaniya fizicheskikh svoystv pochv [Methods for research of physical properties of the soil]. Moscow: Agropromizdat. 416 p.
  66. Verhoef, H.A., Brussaard, L., 1990. Decomposition and nitrogen mineralisation in natural and agro-ecosystems: the contribution of soil animals. Biogeochemistry, 11: 175–211. https://doi.org/10.1007/BF0000449610.1007/BF00004496
  67. Viketoft, M., 2013. Determinants of small-scale spatial patterns: importance of space, plants and abiotics for soil nematodes. Soil Biology and Biochemistry, 62: 92–98. https://doi.org/10.1016/j.soilbio.2013.03.01210.1016/j.soilbio.2013.03.012
  68. Warren, M.W., Zou, X., 2002. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management, 170: 161–171. https://doi.org/10.1016/S0378-1127(01)00770-810.1016/S0378-1127(01)00770-8
  69. Weber, G.B., Gobat, J.M., 2006. Identification of faces models in alluvial soil formation: The case of a Swiss alpine floodplain. Geomorphology, 74: 181–195. http://dx.doi.org/10.1016/j.geomorph.2005.07.01610.1016/j.geomorph.2005.07.016
  70. Westhoff, V., van der Maarel, E., 1978. The Braun-Blanquet approach. In Whittaker, R.H. (eds). Classification of plant communities. The Hague: Junk, p. 289–399.10.1007/978-94-009-9183-5_9
  71. Zadorozhnaya, G.A., Andrusevych, K.V., Zhukov, O.V., 2018. Soil heterogeneity after recultivation: ecological aspect. Folia Oecologica, 45: 46–52. https://doi.org/10.2478/foecol-2018-000510.2478/foecol-2018-0005
  72. Zhukov, O., Kunah, O., Dubinina, Y., Novikova, V., 2018a. The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river. Folia Oecologica, 45: 8–23. https://doi.org/10.2478/foecol-2018-000210.2478/foecol-2018-0002
  73. Zhukov, O., Kunah, O., Dubinina, Y., Novikova, V., 2018b. The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37 (3): 301–327. https://doi.org/10.2478/eko-2018-002310.2478/eko-2018-0023
DOI: https://doi.org/10.2478/foecol-2019-0013 | Journal eISSN: 1338-7014 | Journal ISSN: 1336-5266
Language: English
Page range: 101 - 114
Submitted on: Jun 9, 2019
|
Accepted on: Sep 28, 2019
|
Published on: Dec 21, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Oleksandr V. Zhukov, Olga M. Kunah, Yuliya Y. Dubinina, Marina P. Fedushko, Vadim I. Kotsun, Yuliya O. Zhukova, Olena V. Potapenko, published by Slovak Academy of Sciences, Institute of Forest Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.