Have a personal or library account? Click to login
Determinants of thermal comfort: analysis of public buildings in a post-transition context Cover

Determinants of thermal comfort: analysis of public buildings in a post-transition context

Open Access
|Dec 2025

References

  1. Abd-Alhamid, F., Michael K. & Yupeng, W. (2003). Quantifying window view quality: A review on view perception assessment and representation methods. Building and Environment, 227, 10-42. https://dx.doi.org/10.1016/j.buildenv.2022.109742.
  2. Akimoto, T., Tanabe, S.I., Yanai, T. & Sasaki, M. (2010). Thermal comfort and productivity: Evaluation of workplace environment in a task conditioned office. Building and Environment, 45(1), 45–50. https://dx.doi.org/10.1016/j.buildenv.2009.05.005.
  3. Al Horr, Y., Arif, M., Kaushik, A., Mazroei, A., Katafygiotou, M. & Elsarrag, E. (2016). Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment, 105, 369–389. https://dx.doi.org/10.1016/j.buildenv.2016.06.001.
  4. Andersen, R.K., Fabi, V. & Corgnati, S.P. (2016). Predicted and actual indoor environmental quality: Verification of occupants’ behaviour models in residential buildings. Energy and Buildings, 127, 105–115. https://dx.doi.org/10.1016/j.enbuild.2016.05.026.
  5. Bedford, T. (1936). The warmth factor in comfort at work. Medical Research Council Industrial Health Board, Report No. 76, HMSO, London.
  6. Blažević, R., Teskeredžić, A. & Zečević, M. (2023). Analysis of existing design temperature for heating in Sarajevo in light of climate changes. Annals of DAAAM & Proceedings. https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2023/working_papers/dpn71020_a_1_Blazevic.pdf, (Accessed: 15.09.2024).
  7. Chen, C.F., Yilmaz, S., Pisello, A.L., De Simone, M., Kim, A., Hong, T. & Zhu, Y. (2020). The impacts of building characteristics, social psychological and cultural factors on indoor environment quality productivity belief. Building and Environment, 185, 107-119. https://dx.doi.org/10.1016/j.buildenv.2020.107189.
  8. Chun, C., Kwok, A., Mitamura, T., Miwa, N. & Tamura, A. (2008). Thermal diary: Connecting temperature history to indoor comfort. Building and Environment, 43(5), 877–885. https://dx.doi.org/10.1016/j.buildenv.2007.01.033.
  9. Conner, M. & Armitage, C.J. (1998). Extending the theory of planned behavior: A review and avenues for further research. Journal of Applied Social Psychology, 28(15), 1429–1464. https://dx.doi.org/10.1111/j.1559-1816.1998.tb01685.x.
  10. Day, J.K. & Gunderson, D.E. (2010). Understanding high performance buildings: The link between occupant knowledge of passive design systems, corresponding behaviors, occupant comfort and environmental satisfaction. Building and Environment, 45(11), 2287–2294. https://dx.doi.org/10.1016/j.buildenv.2010.04.014.
  11. De Dear, R., Xiong, J., Kim, J. & Cao, B. (2020). A review of adaptive thermal comfort research since 1998. Energy and Buildings, 214, 93-98. https://dx.doi.org/10.1016/j.enbuild.2020.109893.
  12. De Dear, R. (1998). Developing an adaptive model of thermal comfort and preference: Field studies of thermal comfort and adaptation. ASHRAE Technical Data Bulletin, 14(1), 27-49. https://dx.doi.org/10.3130/aija.67.21_3.
  13. De Dear, R.J. & Brager, G.S. (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549–561. https://dx.doi.org/10.1016/S0378-7788(02)00005-1.
  14. De Dear, R.J. & Brager, G.S. (1998). Developing an adaptive model of thermal comfort and preference. ASHRAE Technical Data Bulletin, 140(1), 27-49.
  15. Díaz-López, C., Serrano-Jiménez, A. & Verichev, K. (2022). Passive cooling strategies to optimise sustainability and environmental ergonomics in Mediterranean schools based on a critical review. Building and Environment, 221, 109-127. https://dx.doi.org/10.1016/j.buildenv.2022.109297.
  16. Dyvia, H.A. & Arif, C. (2021). Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network. IOP Conference Series: Earth and Environmental Science, 622(1), 12-19. https://dx.doi.org/10.1088/1755-1315/622/1/012019.
  17. Fanger, P.O. (1970). Thermal comfort: analysis and applications in environmental engineering. Perspect Public Health, 92, 164-180.
  18. Federal Hydrometeorological Institute. (2021). Meterološki godišnjak 2021. https://www.fhmzbih.gov.ba/podaci/klima/godisnjak/G2021.pdf, (Accessed: 05.09.2024).
  19. Fisk, W.J. (2000). Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Annual Review of Energy and the Environment, 25(1), 537–566. https://dx.doi.org/10.1146/annurev.energy.25.1.537.
  20. Frontczak, M. & Wargocki, P. (2011). Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, 46(4), 922-937. https://dx.doi.org/10.1016/j.buildenv.2010.10.021.
  21. Geng, Y., Ji, W., Lin, B. & Zhu, Y. (2017). The impact of thermal environment on occupant IEQ perception and productivity. Building and Environment, 121, 158-167. https://dx.doi.org/10.1016/j.buildenv.2017.05.022.
  22. Griefahn, B. & Künemund, C. (2001). The effects of gender, age, and fatigue on susceptibility to draft discomfort. Journal of Thermal Biology, 26(5), 395-400. https://dx.doi.org/10.1016/S0306-4565(01)00046-4.
  23. Guo, X., Luo, W., Mangoubi, O. & Liu, S. (2025). Cross-modal interaction between temperature and light color temperature on reading comprehension. Building and Environment, 274, 112-151. https://dx.doi.org/10.1016/j.buildenv.2025.112751.
  24. Halawa, E. & Van Hoof, J. (2012). The adaptive approach to thermal comfort: A critical overview. Energy and Buildings, 51, 101-110. https://dx.doi.org/10.1016/j.enbuild.2012.05.006.
  25. Humphreys, M.A. (1978). Outdoor temperatures and comfort indoors. Building Research and Practice, 6(2), 92–105. https://dx.doi.org/10.1080/09613217808550656.
  26. Humphreys, M.A., Nicol, J.F. & Raja, I.A. (2012). Field studies of indoor thermal comfort and the progress of the adaptive approach. Advances in Building Energy Research. Routledge, London.
  27. Humphreys, M.A. & Nicol, J.F. (1998). Understanding the adaptive approach to thermal comfort. ASHRAE Transac- tions, 104(1), 991-1004.
  28. Hwang, R.L., Lin, T.P., Cheng, M.J. & Chien, J.H. (2007). Patient thermal comfort requirement for hospital environments in Taiwan. Building and Environment, 42(8), 2980-2987. https://dx.doi.org/10.1016/j.buildenv.2006.07.035.
  29. Indraganti, M., Ooka, R. & Rijal, H.B. (2015). Thermal comfort in offices in India: Behavioral adaptation and the effect of age and gender. Energy and Buildings, 103, 284–295. https://dx.doi.org/10.1016/j.enbuild.2015.05.042.
  30. Karjalainen, S. (2012). Thermal comfort and gender: A literature review. Indoor Air, 22(2), 96-109. https://dx.doi.org/10.1111/j.1600-0668.2011.00747.x.
  31. Kawakubo, S., Sugiuchi, M. & Arata, S. (2023). Office thermal environment that maximizes workers’ thermal comfort and productivity. Building and Environment, 233, 92-110. https://dx.doi.org/10.1016/j.buildenv.2023.110092.
  32. Kim, J., Schiavon, S. & Brager, G. (2018a). Personal comfort models: A new paradigm in thermal comfort for occupant -centric environmental control. Building and Environment, 132, 114-124. https://dx.doi.org/10.1016/j.buildenv.2018.01.023.
  33. Kim, J., Zhou, Y., Schiavon, S., Raftery, P. & Brager, G. (2018b). Personal comfort models: Predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning. Building and Environment, 129, 96-106. https://dx.doi.org/10.1016/j.buildenv.2017.12.011.
  34. Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P. & Engelmann, W.H. (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11(3), 231-252. https://dx.doi.org/10.1038/sj.jea.7500165.
  35. Langevin, J., Wen, J. & Gurian, P.L. (2013). Modeling thermal comfort holistically: Bayesian estimation of thermal sensation, acceptability, and preference distributions for office building occupants. Building and Environment, 69, 206-226. https://dx.doi.org/10.1016/j.buildenv.2013.08.028.
  36. Liu, S., Schiavon, S., Das, H.P., Jin, M. & Spanos, C.J. (2019). Personal thermal comfort models with wearable sensors. Building and Environment, 162, 106-121. https://dx.doi.org/10.1016/j.buildenv.2019.106281.
  37. Luo, M., Ji, W., Cao, B., Ouyang, Q. & Zhu, Y. (2016). Indoor climate and thermal physiological adaptation: Evidences from migrants with different cold indoor exposures. Building and Environment, 98, 30-38. https://dx.doi.org/10.1016/j.buildenv.2015.12.008.
  38. Monfared, I. & Sharples, S. (2011). Occupants’ perceptions and expectations of a green office building: A longitudinal case study. Architectural Science Review, 54(1), 344-355. https://dx.doi.org/10.1080/00038628.2011.613636.
  39. Nicol, F., Humphreys, M. & Roaf, S. (2012). Adaptive thermal comfort: Principles and practice. Routledge, London.
  40. Nicol, J.F. (2011). Adaptive comfort. Building Research & Information, 39(2), 105-107. https://dx.doi.org/10.1080/09613218.2011.557882.
  41. Nicol, J.F. & Humphreys, M.A. (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 34(6), 563-572. https://dx.doi.org/10.1016/S0378-7788(02)00006-3.
  42. Peulić, S., Gajić, D. & Sandak, A. (2021). Towards deep energy retrofitting: An overview and possibilities for Slovenia and Bosnia-Herzegovina. ENEF Conference. https://enef.etfbl.net/2021/resources/Radovi/3.%20Towards%20deep%20energy%20retrofitting%20an%20overview%20and%20possibilities%20for%20Slovenia%20and%20Bosnia-Herzegovina.pdf, (Accessed: 07.09.2024).
  43. Putra, J.C.P. (2017). A study of thermal comfort and occupant satisfaction in office room. Procedia Engineering, 170, 240-247. https://dx.doi.org/10.1016/j.proeng.2017.03.068.
  44. Schweiker, M., Ampatzi, E., Andargie, M.S., Andersen, R.K., Azar, E., Barthelmes, V. & Zhang, S. (2020a). Review of multi-domain approaches to indoor environmental perception and behaviour. Building and Environment, 176, 106-124. https://dx.doi.org/10.1016/j.buildenv.2020.106804.
  45. Schweiker, M., Rissetto, R. & Wagner, A. (2020b). Thermal expectation: Influencing factors and its effect on thermal perception. Energy and Buildings, 210, 109-139. https://dx.doi.org/10.1016/j.enbuild.2020.109729.
  46. Shahzad, S., Brennan, J., Theodossopoulos, D., Calautit, J.K. & Hughes, B.R. (2018). Does a neutral thermal sensation determine thermal comfort? Building Services Engineering Research and Technology, 39(2), 183-195. https://dx.doi.org/10.1177/0143624417751910.
  47. Tanabe, S.I., Haneda, M. & Nishihara, N. (2015). Workplace productivity and individual thermal satisfaction. Building and Environment, 91, 42-50. https://dx.doi.org/10.1016/j.buildenv.2015.03.015.
  48. Velt, K.B. & Daanen, H.A.M. (2017). Thermal sensation and thermal comfort in changing environments. Journal of Building Engineering, 10, 42-46. https://dx.doi.org/10.1016/j.jobe.2017.02.003.
  49. Wang, C., Zhang, F., Wang, J., Doyle, J.K., Hancock, P.A., Mak, C.M. & Liu, S. (2021). How indoor environmental quality affects occupants’ cognitive functions: A systematic review. Building and Environment, 193, 107-147. https://dx.doi.org/10.1016/j.buildenv.2021.107647.
  50. Yao, R., Zhang, S., Du, C., Schweiker, M., Hodder, S., Olesen, B.W. & Li, B. (2022). Evolution and performance analysis of adaptive thermal comfort models: A comprehensive literature review. Building and Environment, 217, 109-120. https://dx.doi.org/10.1016/j.buildenv.2022.109020.
  51. Zarrabi, A. H., Azarbayjani, M., Day, J., Thariyan, E., Stearns, E., & Dale, B. (2017). Visual qualities and perceived thermal comfort: Results of survey studies in a LEED Platinum office building. ARCC 2017: Architecture of Complexity. ARCC, New York.
Language: English
Page range: 51 - 67
Submitted on: Feb 6, 2025
|
Accepted on: Jul 30, 2025
|
Published on: Dec 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Ljiljan Veselinović, Jasmina Mangafić, Lejla Lazović-Pita, published by University of Information Technology and Management in Rzeszow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.