Abbas, A.T., Helmy, M.O., Al-Abduljabbar, A.A., Soliman, M.S., Hasan, A.S. & Elkaseer, A. (2023). Precision face milling of maraging steel 350: An experimental investigation and optimization using different machine learning techniques. Machines, 11(11), 1-20, https://doi.org/10.3390/machines11111001.
Abdulrazzak, A.Y., Mohammed, S.L., Al-Naji, A. & Chahl, J. (2024). Real-time jaundice detection in neonates based on machine learning models. BioMedInformatics, 4(1), 623-637, https://doi.org/10.3390/biomedinformatics4010034.
Afreen, M. (2020). Review paper on composite leading index creation for forecasting the Bangladeshi financial sector. International Journal of Finance & Banking Studies, 9(4), 23-32, https://doi.org/10.20525/ijfbs.v9i4.791.
Akinrinola, O., Addy, W.A., Ajayi-Nifise, A.O., Odeyemi, O. & Falaiye, T. (2024). Application of machine learning in tax prediction: A review with practical approaches. Global Journal of Engineering and Technology Advances, 18(2), 102-117, https://doi.org/10.30574/gjeta.2024.18.2.0028.
Avelar, E.A. & Jordão, R.V.D. (2024). The role of artificial intelligence in the decision-making process: A study on the financial analysis and movement forecasting of the world’s largest stock exchanges. Management Decision, Pre-print, 1-19, https://doi.org/10.1108/MD-09-2023-1625.
Azad, M., Chikalov, I., Hussain, S., Moshkov, M. & Zielosko, B. (2022). Greedy algorithms for decision trees with hypotheses. arXiv Preprint, https://arxiv.org/abs/2203.08848.
Ballings, M., Van den Poel, D., Hespeels, N. & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056. https://doi.org/10.1016/j.eswa.2015.04.013.
Barauskaite, G. & Streimikiene, D. (2021). Corporate social responsibility and financial performance of companies: The puzzle of concepts, definitions and assessment methods. Corporate Social Responsibility and Environmental Management, 28(1), 278-287, https://doi.org/10.1002/csr.2033.
Barboza, F., Kimura, H. & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417, https://doi.org/10.1016/j.eswa.2015.05.013.
Barnhizer, D. & Barnhizer, D. (2019). The Artificial Intelligence Contagion: Can Democracy Withstand the Imminent Transformation of Work, Wealth and the Social Order? SCB Distributors, West Rancho Dominguez.
Bhattacharya, A. (2022). Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more. Packt Publishing, Birmingham.
Chen, C.P. & Zhang, C.Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275, 314-347, https://doi.org/10.1016/j.ins.2014.01.015.
Chen, T. & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794), New York.
Ekanayake, I.U., Meddage, D.P.P. & Rathnayake, U. (2022). A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP). Case Studies in Construction Materials, 16, 1-20, https://doi.org/10.1016/j.cscm.2022.e01059.
El Bouchefry, K. & de Souza, R.S. (2020). Learning in big data: Introduction to machine learning. In: Knowledge discovery in big data from astronomy and earth observation (pp. 225-249). Elsevier, Amsterdam.
Fraz, N. (2024). A study on comparison of various machine learning models for the best prediction of 305 days first lactation milk yield, Research Square, 1-16, https://doi.org/10.21203/rs.3.rs-4484720/v1.
Friedman, J., Hastie, T. & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22, https://pmc.ncbi.nlm.nih.gov/articles/PMC2929880/.
Geng, R., Bose, I. & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236-247.
George, A.S. (2024). Finance 4.0: The transformation of financial services in the digital age, Partners Universal Innovative Research Publication, 2(3), 104-125.
Grissa, D., Nytoft Rasmussen, D., Krag, A., Brunak, S. & Juhl Jensen, L. (2020). Alcoholic liver disease: A registry view on comorbidities and disease prediction. PLoS Computational Biology, 16(9), 1-19.
Gupta, A., Sharma, A. & Goel, A. (2017). Review of regression analysis models. International Journal of Engineering Research & Technology, 6(8), 58-61.
Gzar, D.A., Mahmood, A.M. & Abbas, M.K. (2022). A comparative study of regression machine learning algorithms: Tradeoff between accuracy and computational complexity. Mathematical Modelling of Engineering Problems, 9(5), 1-8, https://doi.org/10.18280/mmep.090508.
Ionescu, S.A. & Diaconita, V. (2023). Transforming financial decision-making: The interplay of AI, cloud computing, and advanced data management technologies. International Journal of Computers Communications & Control, 18(6), 1-9, https://doi.org/10.15837/ijccc.2023.6.5735.
Jalal Uddin, M., Li, Y., Abdus Sattar, M. & Mistry, S. (2022). Climatic water balance forecasting with machine learning and deep learning models over Bangladesh. International Journal of Climatology, 42(16), 10083-10106.
Jiang, X., Zhou, R., Jiang, F., Yan, Y., Zhang, Z. & Wang, J. (2024). Construction of diagnostic models for the progression of hepatocellular carcinoma using machine learning. Frontiers in Oncology, 14, 1-11.
Johnson, R. & Zhang, T. (2013). Learning nonlinear functions using regularized greedy forest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5), 942-954, https://doi.org/10.1109/TPAMI.2013.159.
Kadiyala, A. & Kumar, A. (2018). Applications of Python to evaluate the performance of decision tree-based boosting algorithms. Environmental Progress & Sustainable Energy, 37(2), 618-623.
Kareem, M.K., Aborisade, O.D., Onashoga, S.A., Sutikno, T. & Olayiwola, O.M. (2023). Efficient model for detecting application layer distributed denial of service attacks. Bulletin of Electrical Engineering and Informatics, 12(1), 441-450, https://doi.org/10.11591/eei.v12i1.3871.
Katal, A., Wazid, M. & Goudar, R.H. (2013). Big data: Issues, challenges, tools, and good practices. In 2013 Sixth International Conference on Contemporary Computing (IC3) (pp. 404-409). IEEE, New Jersey.
Khalaf, G. (2012). A proposed ridge parameter to improve the least square estimator. Journal of Modern Applied Statistical Methods, 11(2), 443-449, https://doi.org/10.22237/jmasm/1351743240.
Kourtellis, N., Morales, G.D.F., Bifet, A. & Murdopo, A. (2016, December). VHT: Vertical Hoeffding Tree. In 2016 IEEE International Conference on Big Data (Big Data) (pp. 915-922). IEEE, New Jersey.
Kulkarni, V.Y. & Sinha, P. K. (2012, July). Pruning of random forest classifiers: A survey and future directions. In 2012 International Conference on Data Science & Engineering (ICDSE) (pp. 64-68). IEEE, New Jersey.
Kumar, B., Sharma, M., Bhat, A. & Kumar, P. (2021). An analysis of Indian agricultural workers: A ridge regression approach. Agricultural Economics Research Review, 34(1), 121-127.
Li, R., Shinde, A., Liu, A., Glaser, S., Lyou, Y., Yuh, B., Wong, J. & Amini, A. (2020). Machine learning–based interpretation and visualization of nonlinear interactions in prostate cancer survival. JCO Clinical Cancer Informatics, 4, 637-646, https://doi.org/10.1200/CCI.20.00002.
Li, S., Qin, J., He, M. & Paoli, R. (2020). Fast evaluation of aircraft icing severity using machine learning based on XGBoost. Aerospace, 7(4), 1-18, https://doi.org/10.3390/aerospace7040036.
Li, Z. (2022). Extracting spatial effects from machine learning models using local interpretation methods: An example of SHAP and XGBoost, Computers, Environment and Urban Systems, 96, 1-18.
Li, Z. (2024). Evaluation of sailing boat performance based on ridge regression and mathematical model optimization. Highlights in Science, Engineering and Technology, 85, 1275-1283.
Long, X., Kampouridis, M. & Jarchi, D. (2022). An in-depth investigation of genetic programming and nine other machine learning algorithms in a financial forecasting problem. In: 2022 IEEE Congress on Evolutionary Computation (CEC) (pp. 01-08). IEEE, New Jersey.
Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N. & Lee, S.I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56-67, https://doi.org/10.1038/s42256-019-0138-9.
Magnan, M., Menini, A. & Parbonetti, A. (2015). Fair value accounting: Information or confusion for financial markets? Review of Accounting Studies, 20, 559-591, https://doi.org/10.1007/s11142-014-9306-7.
Mahalakshmi, V., Kulkarni, N., Kumar, K.P., Kumar, K.S., Sree, D.N. & Durga, S. (2022). The role of implementing artificial intelligence and machine learning technologies in the financial services industry for creating competitive intelligence. Materials Today: Proceedings, 56, 2252-2255.
Mayr, A. & Schmid, M. (2014). Boosting the concordance index for survival data–A unified framework to derive and evaluate biomarker combinations. PLoS One, 9(1), 1-10, https://doi.org/10.1371/journal.pone.0084483.
Meir, R. & Rätsch, G. (2003). An introduction to boosting and leveraging. In: Advanced Lectures on Machine Learning: Machine Learning Summer School (pp. 118-183). Springer, Berlin.
Mishina, Y., Murata, R., Yamauchi, Y., Yamashita, T. & Fujiyoshi, H. (2015). Boosted random forest. IEICE Transactions on Information and Systems, 98(9), 1630-1636, https://doi.org/10.1587/transinf.2014OPP0004.
Mitchell, R., Frank, E. & Holmes, G. (2022). GPUTreeShap: Massively parallel exact calculation of SHAP scores for tree ensembles. PeerJ Computer Science, 8, 1-25, https://doi.org/10.7717/peerj-cs.880.
Moshkov, M. (1997). Algorithms for constructing of decision trees. In: Principles of Data Mining and Knowledge Discovery: First European Symposium (pp. 335-342). Springer, Berlin.
Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R. & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1-21.
Nguyen, D.K., Sermpinis, G. & Stasinakis, C. (2023). Big data, artificial intelligence and machine learning: A transformative symbiosis in favor of financial technology. European Financial Management, 29(2), 517-548.
Oliva, R. & Watson, N. (2009). Managing functional biases in organizational forecasts: A case study of consensus forecasting in supply chain planning. Production and Operations Management, 18(2), 138-151.
Onoja, M., Jegede, A., Blamah, N., Abimbola, O.V. & Omotehinwa, T.O. (2022). EEMDS: Efficient and effective mal-ware detection system with hybrid model based on XceptionCNN and LightGBM algorithm. Journal of Computing and Social Informatics, 1(2), 42-57, https://doi.org/10.33736/jcsi.4739.2022.
Orsini, N., Moore, A. & Wolk, A. (2022). Interaction analysis based on Shapley values and extreme gradient boosting: A realistic simulation and application to a large epidemiological prospective study. Frontiers in Nutrition, 9, 1-8.
Park, S., Son, S., Bae, J., Lee, D., Kim, J.J. & Kim, J. (2021). Robust spatiotemporal estimation of PM concentrations using boosting-based ensemble models. Sustainability, 13(24), 1-15.
Paul, B., Athithan, G. & Murty, M.N. (2009). Speeding up AdaBoost classifier with random projection. In: 2009 Seventh International Conference on Advances in Pattern Recognition (pp. 251-254), IEEE, New Jersey.
Penman, S. H. (2002). The quality of financial statements: Perspectives from the recent stock market bubble. Papers SSRN 319262, 1-44, http://dx.doi.org/10.2139/ssrn.319262.
Permana, S., Rosadi, R. & Nikki, N. (2022). Application of classification algorithm for sales prediction. TEKNOKOM, 5(2), 119-124, https://doi.org/10.31943/teknokom.v5i2.77.
Perrini, F., Russo, A., Tencati, A. & Vurro, C. (2011). Deconstructing the relationship between corporate social and financial performance. Journal of Business Ethics, 102, 59-76, https://doi.org/10.1007/s10551-011-1194-1.
Poojithaa, M. & Malathib, K. (2022). Decision tree over support vector machine for better accuracy in identifying the problem based on the Iris flower. Advances in Parallel Computing Algorithms, Tools and Paradigms, 41, 209-217.
Prasad, A. & Bakhshi, P. (2022). Forecasting the direction of daily changes in the India VIX index using machine learning. Journal of Risk and Financial Management, 15(12), 1-16, https://doi.org/10.3390/jrfm15120552.
Provost, F. & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big Data, 1(1), 51-59, https://doi.org/10.1089/big.2013.1508.
Rajaratnam, B., Roberts, S., Sparks, D. & Dalal, O. (2015). Lasso regression: Estimation and shrinkage via the limit of Gibbs sampling. Journal of the Royal Statistical Society: Series B Statistical Methodology, 78(1), 153-174.
Ramnath, S., Rock, S. & Shane, P. (2008). The financial analyst forecasting literature: A taxonomy with suggestions for further research. International Journal of Forecasting, 24(1), 34-75.
Rohatgi, S., Singh, K.K. & Jasuja, D. (2021). Comparative analysis of machine learning algorithm to forecast Indian stock market. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 278-283). IEEE, New Jersey, https://doi.org/10.1109/ICACITE51222.2021.9404642.
Rosenbusch, H., Soldner, F., Evans, A.M. & Zeelenberg, M. (2021). Supervised machine learning methods in psychology: A practical introduction with annotated R code. Social and Personality Psychology Compass, 15(2), 1-25.
Rufo, D., Debelee, T., Ibenthal, A. & Negera, W. (2021). Diagnosis of diabetes mellitus using gradient boosting machine (LightGBM). Diagnostics, 11(9), 1-14, https://doi.org/10.3390/diagnostics11091714
Ryll, L. & Seidens, S. (2019). Evaluating the performance of machine learning algorithms in financial market forecasting: A comprehensive survey, arXiv preprint, 1906, https://doi.org/10.48550/arXiv.1906.07786.
Sandhya, V. & Padyana, A. (2021). Machine learning based crop yield prediction on geographical and climatic data. In: 2021 Sixth International Conference on Image Information Processing (ICIIP) (pp. 186-191). IEEE, New Jersey.
Si, Z., Niu, H. & Wang, W. (2022). Credit Risk Assessment by a Comparison Application of Two Boosting Algorithms. In: Fuzzy Systems and Data Mining VIII (pp. 34-40). IOS Press, Amsterdam.
Signorino, C. & Kirchner, A. (2018). Using lasso to model interactions and nonlinearities in survey data. Survey Practice, 11(1), 1-10, https://doi.org/10.29115/SP-2018-0005.
Siringoringo, R., Perangin, R. & Jamaluddin, J. (2021). Model hibrid genetic-XGBoost dan principal component analysis pada segmentasi dan peramalan pasar. Methomika Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 5(2), 97-103, https://doi.org/10.46880/jmika.Vol5No2.pp97-103.
Sonkavde, G. (2023). Forecasting stock market prices using machine learning and deep learning models: A systematic review, performance analysis and discussion of implications. International Journal of Financial Studies, 11(3), 1-22, https://doi.org/10.3390/ijfs11030094.
Strobl, C., Boulesteix, A., Kneib, T., Augustin, T. & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9(1), 1-11.
Su, H., Lu, X., Chen, Z., Zhang, H., Lu, W. & Wu, W. (2021). Estimating coastal chlorophyll-a concentration from time-series OLCI data based on machine learning. Remote Sensing, 13(4), 1-21.
Suacana, I. (2024). Optimizing the 2024 governor election quick count with extreme gradient boosting (XGBoost) to increase voting prediction accuracy. International Journal of Software Engineering and Computer Science, 4(1), 91-106, https://doi.org/10.35870/ijsecs.v4i1.2286.
Ünal, A. F., Kaleli, A. Y., Ummak, E. & Albayrak, Ö. (2021, August). A Comparison of State-of-the-Art Machine Learning Algorithms on Fault Indication and Remaining Useful Life Determination by Telemetry Data. In: 8th International Conference on Future Internet of Things and Cloud (pp. 79-85). IEEE, New Jersey.
Wang, L., Kern, R., Yu, E., Choi, S. & Pan, J. (2023). IntelliSleepScorer, a software package with a graphic user interface for automated sleep stage scoring in mice based on a light gradient boosting machine algorithm. Scientific Reports, 13(1), 1-11, https://doi.org/10.1038/s41598-023-31288-2.
Wang, P., Xie, M., Wang, X., Yu, J., Chen, E., Zhou, Z., Niu, Y., Song, W., Ni, Q. & Zhu, J. (2022). Comparison of nomo-gram with machine learning techniques for prediction of overall survival in patients with retroperitoneal liposarcoma, Research Square, 1, 1-20.
Wang, S., Pengfei, D. & Tian, Y. (2017). A novel method of statistical line loss estimation for distribution feeders based on feeder cluster and modified XGBoost. Energies, 10(12), 1-17.
Wei, C. (2024). Comparison of different machine learning classification models for predicting deep vein thrombosis in lower extremity fractures. Scientific Reports, 14(1), 1-8.
Wu, Z., Lei, T., Shen, C., Wang, Z., Cao, D. & Hou, T. (2019). ADMET evaluation in drug discovery. 19. Reliable prediction of human cytochrome P450 inhibition using artificial intelligence approaches. Journal of Chemical Information and Modeling, 59(11), 4587-4601, https://doi.org/10.1021/acs.jcim.9b00801.
Xiang, Y. (2024). Enhancing non-invasive colorectal cancer screening with stool DNA methylation markers and LightGBM machine learning, Research Square, 1, 1-19, https://doi.org/10.21203/rs.3.rs-3857174/v1.
Xiao, D., Chen, J., Zhang, K. & Qian, H. (2020). Privacy-preserving locally weighted linear regression over encrypted millions of data. IEEE Access, 8, 2247-2257, https://doi.org/10.1109/ACCESS.2019.2962700.
Xin, S. & Khalid, K. (2018). Modelling house price using ridge regression and lasso regression. International Journal of Engineering & Technology, 7(4), 498-501.
Yin, S., Ouyang, P., Xu, D., Liu, L. & Wei, S. (2017). An AdaBoost-based face detection system using parallel configurable architecture with optimized computation. IEEE Systems Journal, 11(1), 260-271.
Yoo, H., Lee, K., Woo, J., Park, S., Lee, S., Joo, J., Bae, J.-S., Hwong, H.-J. & Park, B. (2022). A genome-wide association study and machine-learning algorithm analysis on the prediction of facial phenotypes by genotypes in Korean women. Clinical, Cosmetic and Investigational Dermatology, 15, 433-445.
Zern, A., Broelemann, K. & Kasneci, G. (2023). Interventional SHAP values and interaction values for piecewise linear regression trees. Proceedings of the AAAI Conference on Artificial Intelligence, 37(9), 11164-11173.
Zhan, C., Zheng, Y., Zhang, H. & Wen, Q. (2021). Random-Forest-Bagging Broad Learning System with applications for COVID-19 pandemic. IEEE Internet of Things Journal, 8, 15906-15918.
Zhang, B., Sethy, A., Sainath, T.N. & Ramabhadran, B. (2011). Application specific loss minimization using gradient boosting. In: IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 4880-4883). IEEE, New Jersey, https://doi.org/10.1109/ICASSP.2011.5947449.
Zhang, J. (2024). Optimization and application of XGBoost logging prediction model for porosity and permeability based on k-means method. Applied Sciences, 14(10), 1-18, https://doi.org/10.3390/app14103956.
Zhang, J. (2024). Prediction of compressive strength of geopolymer concrete landscape design: Application of the novel hybrid RF-GWO-XGBoost algorithm. Buildings, 14(3), 1-32, https://doi.org/10.3390/buildings14030591.
Zhang, J., Mucs, D., Norinder, U. & Svensson, F. (2019). LightGBM: An effective and scalable algorithm for prediction of chemical toxicity-application to the Tox21 and mutagenicity data sets. Journal of Chemical Information and Modeling, 59(10), 4150-4158, https://doi.org/10.1021/acs.jcim.9b00633.
Zhang, P., Jia, Y. & Shang, Y. (2022). Research and application of XGBoost in imbalanced data. International Journal of Distributed Sensor Networks, 18(6), 1-10, https://doi.org/10.1177/15501329221106935.
Zhao, G., Wang, Y. & Wang, J. (2023). Intrusion detection model of Internet of Things based on LightGBM. IEICE Transactions on Communications, 106(8), 622-634, https://doi.org/10.1587/transcom.2022EBP3169.