Have a personal or library account? Click to login

An artificial intelligence-based forecasting of the dynamics of relative profit rates at a financial crisis juncture: A model, a case study and crisis management policies

By:
Open Access
|Mar 2025

References

  1. Aliber, R.Z., Kindleberger, C.P. & McCauley, R.N. (2023) Manias, Panics and Clashes: A history of Financial Crisis. Pal-grave MacMillian, New York.
  2. Alkan, H. (2016). 15 Temmuz’u Anlamak: Parametreler ve Sonuçlar. Bilig, 79, 253-272.
  3. Aoki, M. (2001). Modeling Aggregate Behavior and Fluctuations in Economics: Stochastic Views of Interacting Agents. Cambridge University Press, Cambridge.
  4. Benhabib, J. (1992). Cycles and Chaos in Economic Equilibrium. Princeton University Press, New Jersey.
  5. Bernanke, B.S., Geithner, T.F. & Paulson, H.M. (2019). Firefighting: The Financial Crisis and Its Lesson. Penguin Books, New York.
  6. Büyükakın, F. & Bilal, E. (2016). Finansal Krizlere Karşı Sukukun Uygulanabilirliği Üzerine bir Değerlendirme. Finansal Araştırmalar ve Çalışmalar Dergisi, 8(14), 33-55.
  7. Cao, D.Z., Pang, S.L. & Bai, Y.H. (2005). Forecasting Exchange Rate Using Support Vector Machines. Proceedings of 2005 International Conference on Machine Learning and Cybernetics, 1, 3448-3452.
  8. Çakı, F. (2018). Türkiye’de 15 Temmuz’un Toplumsal Etkileri ve Ona Yol Açan Faktörler Üzerine Düşünceler. Akademik İncelemeler Dergisi, 13(1), 91-124.
  9. Cohen, B. (1997). The Edge of Chaos: Financial Booms, Bubbles, Crashes and Chaos. Wiley, New Jersey.
  10. Coskun, Ö.A. & Eken, M.H. (2015). 2001 ve 2008 Krizlerinin Türk Bankacılık Sektörüne Etkilerinin Karşılaştırılması. Maliye ve Finans, 104, 105-130.
  11. Dakhlaoui, I. & Aloui, C. (2013). The US Oil Spot Market: A Deterministic Chaotic Process or Stochastic Process? Journal of Energy Markets, 6(1), 51-93.
  12. Dusza, M. (2017). Financial chaos. Management Issues, 15(2), 169-189.
  13. Dzhagityan, E.P. (2017). Macroprudential Policy in Post-crisis Banking Regulation. World Economy and International Relations, 61(11), 13-23.
  14. Filip, A., Pochea, M. & Pece, A. (2015). The Herding Behaviour of Investors in the CEE Stocks Markets. Procedia Economics and Finance, 32, 307-315.
  15. Frank, E., Hall, M.A. & Witten, I.H. (2022). The WEKA Workbench”, Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”. https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf (Accessed: 18.07.2024).
  16. Gaffeo, E. & Molinari, M. (2017). Taxing Financial Transactions in Fundamentally Heterogeneous Markets. Economic Modeling, 64(1), 322-333.
  17. Gassouma, M.S., Benhamed, A. & El Montasser, G. (2023). Investigating Similarities between Islamic and Conventional Banks in GCC countries: A Dynamic Time Warping Approach”, International Journal of Islamic and Middle Eastern Finance and Management, 16(1), 103-129.
  18. Garel, A. & Petit-Romec, A. (2017). Bank Capital in the Crisis: It’s not just How Much You Have but Who Provides it. Journal of Banking and Finance, 75, 152-166.
  19. Gennaioli, N. & Shleifer, A. (2018). A Crisis of Beliefs: Investor Psychology and Financial Fragility. Princeton University Press, New Jersey.
  20. Gilmore, C.G. (1993). A New Test for Chaos. Journal of Economic Behavior and Organization, 22(2), 209-237.
  21. Gökalp, F. (2014). Kriz Sonrası Dönemler İtibariyle Katılım Bankaları ve Ticari Bankaların Karlılığı Üzerine Karşılaştırmalı bir Araştırma. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 32, 191-201.
  22. Grosse, R. (2017). The global financial crisis-Market misconduct and regulation from a behavioral view. Research in International Business and Finance, 41, 387–398.
  23. Hernandez, J.M. & Mendoza, E.G. (2017). Optimal v. Simple Financial Policy Rules in a Production Economy with “liability dollarization”. Ensayos Sobre Politica Economica, 35(82), 25-39.
  24. Hlaing, S.W. & Kakinaka, M. (2018). Financial Crisis and Financial Policy Reform: Crisis Origins and Policy Dimensions. European Journal of Political Economy, 55, 224-243.
  25. Hoffmann, A.O.I., Post, T. & Pennings, J.M.E. (2013). Individual Investor Perceptions and Behavior during the Financial Crisis. Journal of Banking & Finance, 37, 60–74.
  26. IMF. (1998). Financial Crises: Characteristics and Indicators of Vulnerability”. In World Economic Outlook. International Monetary Fund, Washington.
  27. Kara, A. (2001). On the Efficiency of the Financial Institutions of Profit-and-Loss-Sharing”. Journal of Economic & Social Research, 3(2), 99-104.
  28. Kara, A. (2007). Discrete Stochastic Dynamics of Income Inequality in Education”. Discrete Dynamics in Nature and Society, 2007(1), 1-15.
  29. Kara, A. (2009). Implications of Multiple Preferences for a Deconstructive Critique and a Reconstructive Revision of Economic Theory. Journal of Economic & Social Research, 11(1), 69-78.
  30. Kara, A. (2013). Dynamics of Education and Technology in Higher Education. Hacettepe Journal of Mathematics and Statistics, 42(1), 87-99.
  31. Kara, A. (2023). Stabilizing Instability-Suboptimality-and-Chaos-Prone Fluctuations at Crisis Junctures: Stochastic Possibilities for Crisis Management. International Journal of Finance & Economics, 28(2), 1772-1786.
  32. Kara, A. & Osman, M. (2006). Dynamic Equilibria in the US Banking Sector: A Model and a Case Study. Journal of Economic and Social Research, 8(2), 43-52.
  33. Kariofyllas, S., Philippas, D. & Siriopoulos, C. (2017). Cognitive Biases in Investors’ Behaviour under Stress: Evidence from the London Stock Exchange. International Review of Financial Analysis, 54, 54–62.
  34. Kassem, B. & Saleh, M. (2005). Simulating a Banking Crisis Using a System Dynamics Model. Egyptian Informatics Journal, 6(2), 125-145.
  35. Katılım Bankaları Birliği. (2023). https://veripetegi.tkbb.org.tr. (Accessed: 18.07.2024).
  36. Klein, P.O., Turk, R. & Weill, L. (2017). Religiosity vs. Well-Being Effects on Investor Behavior. Journal of Economic Behavior & Organization, 138, 50-62.
  37. Korol, T. & Fodadis, A.K. (2022). Implementing Artificial Intelligence in Forecasting the Risk of Personal Bankruptcies in Poland and Taiwan. Oeconomia Copernicana, 13(2), 407-438.
  38. Kyrtsou, C. & Terraza, M. (2002). Stochastic Chaos or ARCH Effects in Stock Series? A Comparative Study. International Review of Financial Analysis, 11(4), 407-431.
  39. Liang, Y. (2012). Global Imbalances and Financial Crisis: Financial Globalization as a Common Cause. Journal of Economic Issues, 46(2), 353-362.
  40. Lin, W.K., Lin, S.J. & Yang, T.N. (2017). Integrated Business Prestige and Artificial Intelligence in Dynamic Environments. Cybernetics and Systems, 48(4), 303-324.
  41. Minsky, H.P. (2008). Stabilizing Unstable Economy, McGraw-Hill, New York.
  42. Purica, I. (2015). Nonlinear Dynamics of Financial Crises: How to Predict Discontinuous Decisions. Academic Press, New York.
  43. Racickas, E. & Vasiliauskaite, A. (2012). Classification of Financial Crises and their Occurrence Frequency in Global Financial Markets. Social Research, 4(29), 32-44.
  44. Reinhart, C.M. & Rogoff, K. S. (2014). Recovery from financial crises: Evidence from 100 episodes. American Economic Review, 104(5), 50-55.
  45. Sabah. (2016). Bank Asya Kapandı, https://www.sabah.com.tr/ekonomi/2016/07/19/bank-asya-kapandi. (Accessed: 18.07.2024).
  46. Saraç, M. & Zeren, F. (2015). The dependency of Islamic Bank Rates on Conventional Bank Interest Rates: Further Evidence from Turkey. Applied Economics, 47(7), 669-679.
  47. Sau, L. (2013). Instability and Crisis in Financial Complex Systems. Review of Political Economy, 25(3), 496-511.
  48. Scazzieri, R. (2018). Structural Dynamics and Evolutionary Change. Structural Change and Economic Dynamics, 46, 52-58.
  49. Scholten, D.G.G. (2016). Explaining the 2008 Financial Crisis with a System Dynamics Model. https://theses.ubn.ru.nl/bitstream/handle/123456789/5093/Scholten%2C_Daan_1.pdf?sequence=1. (Accessed: 18.07.2024).
  50. Sukmana, R. & Ibrahim, M.H. (2017). How Islamic are Islamic banks? A Non-Linear Assessment of Islamic Rate - Conventional Rate Relations. Economic Modelling, 64, 443–448.
  51. Tang, L. & Sheng, H. (2009). Forecasting stock returns based on spline wavelet support vector. In: 2009 International Conference on Computational Intelligence and Natural Computing (pp. 383-385). IEEE, Wuhan.
  52. Tang, B., Sheng, H.Y. & Tang, L.X. (2009). GARCH prediction using spline wavelet support vector machine. Neural Computing & Applicatıons, 18(8), 913-917.
  53. TCMB. (2023). https://www.tcmb.gov.tr. (Accessed: 18.07.2024).
  54. Torky, M., Gad, I. & Hassanien, A.E. (2023). Explainable AI Model for Recognizing Financial Crisis Roots Based on Pigeon Optimization Gradient Boosting Model. International Journal of Computational Intelligent Systems, 16(1), 1-30.
  55. Urbanikova, M. & Stubnova, M. (2020). Use of Artificial Neural Networks in the Capital Markets. AD-ALTA – Journal of Interdisciplinary Research, 10(1), 278-281.
  56. Ustaoğlu, D. (2014). Türkiye’de Katılım Bankacılığı: Sektördeki Yeri ve Önemi. Unpublished Ma. Thesis. Adnan Menderes University, Turkey.
  57. Varsak, S. (2017). Participation Banking in Turkey and its Effects on the Turkish Financial System. Balkan and Near Eastern Journal of Social Sciences, 3, 104-109.
  58. Yang, H., Ahn, H.J., Kim, M.H. & Ryu, D. (2017). Information Asymmetry and Investor Trading Behavior Around Bond Rating Change Announcements. Emerging Markets Review, 32, 38-51.
  59. Yang, H.J. & Chen, S.H. (2018). A Heterogeneous Artificial Stock Market Can Benefit People against Another Financial Crisis. Plos One, 13(6), 1-25.
  60. Zhang, W. & Wang, J. (2017). Nonlinear Stochastic Exclusion Financial Dynamics Modeling and Complexity Behaviors. Nonlinear Dynamics, 88(2), 921-935.
Language: English
Page range: 15 - 26
Submitted on: Jul 18, 2024
Accepted on: Nov 4, 2024
Published on: Mar 26, 2025
Published by: University of Information Technology and Management in Rzeszow
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Ahmet Kara, published by University of Information Technology and Management in Rzeszow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.