Abellán, J. & Mantas, C.J., (2014). Improving Experimental Studies About Ensembles of Classifiers for Bankruptcy Prediction and Credit Scoring. Expert Systems with Applications, 41(8), 3825-3830.10.1016/j.eswa.2013.12.003
Adamowicz, K. & Noga, T. (2017). Assessment Applicability of Selected Models of Multiple Discriminant Analyses to Forecast Financial Situation of Polish Wood Sector Enterprises. Folia Forestalia Polonica. Series A. Forestry, 59(1), 59-67.10.1515/ffp-2017-0006
Altman, E.I., (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance, 23(4), 589-609.10.1111/j.1540-6261.1968.tb00843.x
Altman, E.I., (2018). A Fifty-year Retrospective on Credit Risk Models, the Altman Z-score Family of Models and Their Applications to Financial Markets and Managerial Strategies. Journal of Credit Risk, 14(4), 1-34.10.21314/JCR.2018.243
Altman, E.I., Haldeman, R.G. & Narayanan, P. (1977). ZETATM Analysis A New Model to Identify Bankruptcy Risk of Corporations. Journal of Banking & Finance, Elsevier, 1(1), 29-54.10.1016/0378-4266(77)90017-6
Altman, E.I., Marco, G. & Varetto, F. (1994). Corporate Distress Diagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks (the Italian Experience). Journal of Banking and Finance, 18(3), 505-529.10.1016/0378-4266(94)90007-8
Barauskaite, G. & Streimikiene, D. (2021). Corporate Social Responsibility and Financial Performance of Companies: The Puzzle of Concepts, Definitions and Assessment Methods. Corporate Social Responsibility and Environmental Management, 28(1), 278-287.10.1002/csr.2048
Barboza, F., Basso, L.F.C. & Kimura, H., (2021). New Metrics and Approaches for Predicting Bankruptcy. Communications in Statistics-Simulation and Computation, 1-18. https://doi.org/10.1080/03610918.2021.1910837.
Bolek, M. & Gniadkowska-Szymańska, A., (2021). The Condition of Companies and their Growth Based on the Example of Companies Included in WIG and DAX Indices. Finanse i Prawo Finansowe, 2(30), 25-44.10.18778/2391-6478.2.30.02
Bombiak, E., (2010). Modele dyskryminacyjne jako metoda oceny sytuacji finansowej przedsiębiorstwa. Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach, Seria: Administracja i Zarządzanie, 86, 141-152.
Brezigar-Masten, A. & Masten, I., (2012). CART-based Selection of Bankruptcy Predictors for the Logit Model. Expert systems with applications, 39(11), 10153-10159.10.1016/j.eswa.2012.02.125
Bustani, B., Kurniaty, K. & Widyanti, R. (2021). The Effect of Earning Per Share, Price to Book Value, Dividend Payout Ratio, and Net Profit Margin on the Stock Price in Indonesia Stock Exchange. Journal Maksipreneur: Manajemen, Koperasi, dan Entrepreneurship, 11(1), 1-18.10.30588/jmp.v11i1.810
Cahyaningrum, Y.W., Antikasari, T.W., (2017). The Influence of Earning Per Share, Price to Book Value, Return on Asset, and Return on Equity to Stock Price in Finance Company. Journal Economia, 13(2), 191-200.10.21831/economia.v13i2.13961
Czerwińska, A., Michna, A., Męczyńska, A. (2013). Determinanty rozwoju małych i średnich przedsiębiorstw sektora budowlanego. Zarządzanie i Finanse, 4(2), 79-80.
Dakua, S., (2019). Effect of Determinants on Financial Leverage in Indian Steel Industry: A Study on Capital Structure. International Journal of Finance & Economics, 24(1), 427-436.10.1002/ijfe.1671
Damodaran, A., (2008). Equity Risk Premiums (ERP): Determinants, Estimation and Implications. Estimation and Implications. Working Paper, 1-77.10.2139/ssrn.1274967
Danbolt, J., Hirst, I.R. & Jones, E., (2011). The Growth Companies Puzzle: Can Growth Opportunities Measures Predict Firm Growth? The European Journal of Finance, 17(1), 1-25.10.1080/13518470903448432
Gajdka, J., Stos, D., (1996). Wykorzystanie analizy dyskryminacyjnej w ocenie kondycji finansowej przedsiębiorstw. In: R. Borowiecki (Ed.), Restrukturyzacja w procesie przekształceń i rozwoju przedsiębiorstw, AE Kraków.
Gniadkowska-Szymańska, A. & Bolek, M., (2018). Ocena kondycji ekonomicznej i płynności finansowej przedsiębiorstwa na rynku kapitałowym w świetle Prawa Upadłościowego. Finanse, Rynki Finansowe, Ubezpieczenia, 91, 11-22.
Gniadkowska-Szymańska, A. & Bolek, M., (2018). Ocena kondycji ekonomicznej i płynności finansowej przedsiębiorstwa na rynku kapitałowym w świetle Prawa Upadłościowego. Finanse, Rynki Finansowe, Ubezpieczenia, 91(1), 11-22.10.18276/frfu.2018.91-01
Hartanti, W., Hermuningsih, S. & Mumpuni, D.L. (2019). Pengaruh Earning Per Share Dan Debt To Equity Ratio Terhadap Return Saham Dengan Kebijakan Deviden Sebagai Intervening Pada Perusahaan Property & Real Estate Yang Terdaftar Di Bei Periode 2013-2017. Journal Sains Manajemen Dan Bisnis Indonesia, 9(1), 34-44.
Hristov, I., Chirico, A. & Appolloni, A., (2019). Sustainability Value Creation, Survival, and Growth of the Company: A Critical Perspective in the Sustainability Balanced Scorecard (SBSC). Sustainability, 11(7), 2119-2138.10.3390/su11072119
Kočišová, K. & Mišanková, M., (2014). Discriminant Analysis as a Tool for Forecasting Company’s Financial Health. Procedia-Social and Behavioral Sciences, 110(2014), 1148-1157.10.1016/j.sbspro.2013.12.961
McKee, T.E. & Lensberg, T. (2002). Genetic Programming and Rough Sets: A Hybrid Approach to Bankruptcy Classification. European Journal of Operational Research, 138(2), 436-451.10.1016/S0377-2217(01)00130-8
Moghimi, R. & Anvari, A. (2012). An Integrated Fuzzy MCDM Approach and Analysis to Evaluate the Financial Performance of Iranian Cement Companies. International Journal of Advanced Manufacturing Technology, 71(1-4), 685-698.10.1007/s00170-013-5370-6
Mohamad, A., Azad, M. & Sifat, I.M., (2021). Predicting Financial Distress in an Emerging Market: Corporate Actions, Accounting Ratios, or both? American Journal of Finance and Accounting, 6(3-4), 314-331.10.1504/AJFA.2021.117217
Mosteanu, N.R., Faccia, A., Torrebruno, G. & Torrebruno, F. (2019). The Newest Intelligent Financial Decisions Tool: Fractals. A Smart Approach to Assess the Risk. The Business & Management Review, 10(2), 89-97.
Olszewska, K. & Turek, T. (2018). Analiza dyskryminacyjna jako narzędzie informacyjne w zakresie kondycji finansowej przedsiębiorstwa. Zeszyty Naukowe Politechniki Częstochowskiej. Zarządzanie, (31), 175-186.10.17512/znpcz.2018.3.15
Pawełek, B., Gałuszka, K., Kostrzewska, J. & Kostrzewski, M. (2017). Classification Methods in the Research on the Financial Standing of Construction Enterprises After Bankruptcy in Poland. In: Data Science (pp. 29-42). Cham: Springer.10.1007/978-3-319-55723-6_3
Pilch, B., (2021). An Analysis of the Effectiveness of Bankruptcy Prediction Models–an Industry Approach. Folia Oeconomica Stetinensia, 21(2), 76-96.10.2478/foli-2021-0017
Pitera, R., (2021). An Assessment of the Reliability of Early Warning Models on the Example of Small and Mediumsized Enterprises in the Industry and Services Sector. Studia Prawno-Ekonomiczne, 119(2021), 315-331.10.26485/SPE/2021/119/17
Prusak, B., (2018). Review of Research Into Enterprise Bankruptcy Prediction in Selected Central and Eastern European Countries. International Journal of Financial Studies, 6(3), 1-28.10.3390/ijfs6030060
Ribeiro, B., Silva, C., Chen, N., Vieira, A. & das Neves, J.C., (2012). Enhanced Default Risk Models with SVM+. Expert Systems with Applications, 39(11), 10140-10152.10.1016/j.eswa.2012.02.142
Saputri, H.A. & Krisnawati, A., (2020). Comparative Analysis of Modified Altman Z-Score, Springate, Zmijewski, Bank-ometer, Grover, and RGEC Models for Financial Distress Prediction (Empirical Study in Banking Companies Listed on IDX 2011-2016). International Journal of Multicultural and Multireligious Understanding, 7(4), 260-278.
Springate, G.L., (1978). Predicting the Possibility of Failure in a Canadian Firm: A Discriminant Analysis (Doctoral dissertation, Simon Fraser University.
Stefański, A., (2010). Analiza dyskryminacyjna na przykładzie wybranych modeli polskich i zagranicznych, Rozwój lokalny i regionalny. Innowacyjność i rozwój przedsiębiorstw. In: Dylewski, M. (Ed.), Zeszyty Naukowe Wyższej Szkoły Bankowej w Poznaniu, 27(2010), 251-264.
Tinoco, M.H., Wilson, N., (2013). Financial Distress and Bankruptcy Prediction Among Listed Companies Using Accounting, Market and Macroeconomic Variables. International Review of Financial Analysis, Vol. 30(2013), 394-419.10.1016/j.irfa.2013.02.013
Vochozka, M., (2010). Development of Methods for Comprehensive Evaluation of Business. Performance Politicka Ekonomie, 58(5), 675-688.10.18267/j.polek.754
Xie, C., Luo, C. & Yu, X., (2011). Financial Distress Prediction Based on SVM and MDA Methods: the Case of Chinese Listed Companies. Quality & Quantity, 45(3), 671-686.10.1007/s11135-010-9376-y
Zhang, B., Zheng, X., (2012). The Application Of Adjusted Dupont Model In Financial Performance Evaluation Book Series: Business and Management, 10(3), 262-268.10.3846/bm.2012.035
Zmijewski, M.E., (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22(1984), 59-82.10.2307/2490859