Have a personal or library account? Click to login
Bayesian Online Change Point Detection in Finance Cover

Bayesian Online Change Point Detection in Finance

By: Reza Habibi  
Open Access
|Jan 2022

References

  1. Adams, R.P., MacKay, D.J. (2007). Bayesian Online Change Point Detection. arXiv Preprint, arXiv:0710.3742.
  2. Davis, R., Lee, T., Rodriguez-Yam, G. (2006). Structural Break Estimation for Non-Stationary Time Series Models. Journal of the American Statistical Association, 101, 223–239.10.1198/016214505000000745
  3. Gombay, E. (2008). Change Detection in Autoregressive Time Series. Journal of Multivariate Analysis, 99, 451–464.10.1016/j.jmva.2007.01.003
  4. Gombay, E., Serban, D. (2009). Monitoring Parameter Change in Time Series Models. Journal of Multivariate Analysis, 100, 715–725.10.1016/j.jmva.2008.08.005
  5. Habibi, H., Howard, I., Habibi, R. (2017). Bayesian Sensor Fault Detection in Markov Jump System. Asian Journal of Control, 19, 1465–1481.10.1002/asjc.1458
  6. Koop, G.M., Potter, S.M. (2004). Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change Points. Technical report. USA: Federal Reserve Bank of New York.
  7. Kurt, B., Yildiz, C., Ceritli, T.Y., Sankur, B., Cemgil, A.T. (2018). A Bayesian Change Point Model for Detecting SIP-based DDoS Attacks. Digital Signal Processing 77, 48–62.10.1016/j.dsp.2017.10.009
  8. Lavielle, M., Moulines, E. (2000). Least-squares Estimation of an Unknown Number of Shifts in a Time Series. Journal of Time Series Analysis, 21, 33–59.10.1111/1467-9892.00172
  9. Lavielle, M., Teyssiere, G. (2007). Adaptive Detection of Multiple Change-points in Asset Price Volatility. Long Memory in Economics, 129–156.10.1007/978-3-540-34625-8_5
  10. Ombao, H., Raz, J., von Sachs, Malow, R. (2001). Automatic Statistical Analysis of Bi-variant Non-stationary Time Series. Journal of the American Statistical Association, 96, 543–560.10.1198/016214501753168244
  11. Page, E.S. (1954). Continuous Inspection Schemes. Biometrika, 41, 100–115.10.1093/biomet/41.1-2.100
  12. Saatci, Y., Turner, R.D., Rasmussen, C.E. (2010). Gaussian Process Change Point Models. In Proceedings of the 27th International Conference on Machine Learning. USA.
  13. Taylor, S.J., Letham, B. (2018). Forecasting at Scale. The American Statistician, 72, 37–45.10.1080/00031305.2017.1380080
  14. Truong, C., Oudre, L., Vayatis, N. (2018). A Review of Change Point Detection Methods. arXiv preprint, arXiv:1801.00718.
  15. Xiao, Z., Hu, S., Zhang, Q., Tian, X., Chen, Y., Wang, J., Chen, Z. (2018). Ensembles of Change-point Detectors: Implications for Real-time BMI Applications. Journal of Computational Neuroscience, 10, 1–18.
Language: English
Page range: 27 - 33
Submitted on: Oct 11, 2021
Accepted on: Dec 1, 2021
Published on: Jan 1, 2022
Published by: University of Information Technology and Management in Rzeszow
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Reza Habibi, published by University of Information Technology and Management in Rzeszow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.