References
- Ahmed, W., Ali, B., Kumar, S., Memon, N.-U.-N., Wahocho, N. A., Miano, T. F., and Memon, M.- U.-N. (2022). Seed germination, vegetative growth and flowering performance of cockscomb (Celosia cristata L.) in response to different potting media. Asian Journal of Agricultural and Horticultural Research, 9(2), 13– 22, https://doi.org/10.9734/ajahr/2022/v9i230138.
- Bhattacharya, B., and Gupta, K. (1981). Steroid hormone effects on growth and apical dominance of sunflower. Phytochemistry, 20, 989–991, https://doi.org/10.1016/0031-9422(81)83014-2.
- Boiteau P., and Ratsimamanga, A. R. (1958). Effects de quelques substances triterpeniques et steroliques sur la germination des graines et la croissance vegetale. Paper presented at the Congress Int. 131. d’Horticulture, Nice, France, 66–73.
- Calujac, L., Boz, I., and Bulai, E. R. (2024). The effect of levothyroxine on Salvia hispanica L. and Triticum aestivum L. seeds. Scientific Studies & Research, Series Biology/Studii si Cercetari Stiintifice. Seria Biologie, 33(1), 63–67. https://doi.org/10.29081/scsb.2024.33.1.07.
- Davis, E. E. (1934). Influence of thyroxin on the growth of plants. Plant Physiology, 9(2), 377–384, https://doi.org/10.1104/pp.9.2.377.
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356, https://doi.org/10.1021/ac60111a017.
- Duncan, D. B. (1955). Multiple range and multiple F test. Biometrics, 11, 1–42, https://doi.org/10.2307/3001478.
- El-Beltagi, H. S., Abdel-Haleem, M., Rezk, A. A., and Khedr, E. H. (2025). Progesterone as a plant physiochemical regulator: Mechanisms and efficacy in alleviating abiotic stress. Journal of Crop Health, 77(2), 60, https://doi.org/10.1007/s10343-025-01125-9.
- Eneqvist, T., Lundberg, E., Nilsson, L., Abagyan, R., and Sauer-Eriksson, A. E. (2003). The transthyretin-related protein family. European Journal of Biochemistry, 270, 518–532, https://doi.org/10.1046/j.1432-1033.2003.03408.x.
- Erdal, S. (2012). Alleviation of salt stress in wheat seedlings by mammalian sex hormones. Journal of the Science of Food and Agriculture, 92(7), 1411– 1416, https://doi.org/10.1002/jsfa.4716.
- Geuns, J. M. C. (1978). Steroid hormones and plant growth and development. Phytochemistry, 17(1), 1–14, https://doi.org/10.1016/s_0031-9422(00)89671-5.
- Gomez, K. A., and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research (p. 680). New York, USA: John Wiley & Sons.
- Gupta, A., Sheikh, S., and Sheikh, N. (2013). Development of underutilized Celosia argentea based value added product and its impact on hemoglobin status of adolescent girls. Acta Horticulturae, 979, 211–216, https://doi.org/10.17660/ActaHortic.2013.979.20.
- Horst, W. J. (1995). The role of the apoplast in aluminium toxicity and resistance of higher plants: A review. Journal of Plant Nutrition and Soil Science, 158, 419–428, https://doi.org/10.1002/jpln.19951580503.
- Janeczko, A. (2000). Influence of selected steroids on plant physiological processes-especially flowering induction (in Polish). PhD Dissertation, Agricultural University, Krakow, Poland.
- Janeczko, A., and Skoczowski, A. (2005). Mammalian sex hormones in plants. Folia Histochemica et Cytobiologica, 43(2), 71–79.
- Kopecká, R., Kameniarová, M., Černý, M., Brzobohatý, B., and Novák, J. (2023). Abiotic stress in crop production. International Journal of Molecular Sciences, 24(7), 6603, https://doi.org/10.3390/ijms24076603.
- Li, H., Chen, L., Chen, H., Xue, R., Wang, Y., and Song, J. (2022). The role of plant progesterone in regulating growth, development, and biotic/abiotic stress responses. International Journal of Molecular Sciences, 23(18), 10945, https://doi.org/10.3390/ijms231810945.
- Lino, M., Nomura, T., Tamaki, Y., Yamada, Y., Yoneyama, K., Takeuchi, Y., Mori, M., Asami, T., Nakano, T., and Yokota, T. (2007). Progesterone: Its occurrence in plants and involvement in plant growth. Phytochemistry, 68, 1664–1673, https://doi.org/10.1016/j.phytochem.2007.04.002.
- Metwally, S. (2015). Studies on the effect of gamma, laser irradiation and progesterone treatments on Gerbera leaves. European Journal of Biophysics, 3(43), https://doi.org/10.11648/j.ejb.20150306.11.
- Mohammad, R. K., Vahid, A., Forogh, M., Ahmad, R. G., and Zahra, S. (2020). Foliar application of ethinyl estradiol and progesterone affects morphological and fruit quality characteristics of strawberry cv. Camarosa. Korean Journal of Horticultural Science and Technology, 38(2), 146– 157, https://doi.org/10.7235/Hort.20200014.
- Mohsen, A., Ahmadi, L., Shahram, S., Sepideh, K., and Davood, H. (2018). The physiological and growth response of Petunia hybrida, Tagetes erecta, and Calendula officinalis to plant and human steroids. Aims Agriculture and Food, 3(2), 85–96, https://doi.org/10.3934/agrfood.2018.2.85.
- Moran, R. (1982). Formula for determination of chlorophyllous pigment extracted with N-N-dimethyl formamide. Plant Physiology, 69, 1376–1381, https://doi.org/10.1104/pp.69.6.1376.
- MSTAT DEVELOPMENT TEAM (1989). USER’S guide to MSTAT-C. A software program for the design, management, and analysis of. Agronomic research experiments. East Lansing, USA: Michigan State University.
- Ozyigit, I. (2012). Influence of levothyroxine sodium on growth and uptake of some mineral elements in cotton (Gossypium hirsutum L.). Pakistan Journal of Botany, 44, 101–104.
- Pinto, A., Da Silva, D. C., Cardoso, A., Fernandes, F., Soares, C., Valentão, P., Fidalgo, F., and Teixeira, J. (2024). Progesterone and brassinosteroids synergistically enhance progesterone removal and antioxidant capacity of Solanum nigrum L. Physiology and Molecular Biology of Plants, 30(8), 1353–1362, https://doi.org/10.1007/s12298-024-01496-9.
- Sameeullah, M., Yildirim, M., Aslam, N., Baloğlu, M. C., Yucesan, B., Lössl, A. G., and Gurel, E. (2021). Plastidial expression of 3β-hydroxysteroid dehydrogenase and progesterone 5β-reductase genes confer enhanced salt tolerance in tobacco. International Journal of Molecular Sciences, 22(21), 11736, https://doi.org/10.3390/ijms222111736.
- Sedaghathoor, S., and Zakibakhsh-Mohammadi, P. (2019). Effect of time of application and amounts of mammalian sex hormone progesterone and gibberellic acid on the growth of Zinnia elegans. Revista Chapingo Serie Horticultura, 25(1), 61–73, https://doi.org/10.5154/r.rchsh.2018.08.017.
- Sedaghathoor, S., Zare, S. K. A., and Shirinpur-Valadi, A. (2024). Progesterone and steroids in progesterone-basic concepts and emerging new applications. IntechOpen, 13, https://doi.org/10.5772/intechopen.1005671.
- Surse, S. N., Shrivastava, B., Sharma, P., Gide, P. S., and Attar, S. (2014). Celosia cristata: Potent pharmacotherapeutic herb – A review. International Journal of Pharmaceutical and Psychopharmacological Research, 3, 444–446.
- Tarkowská, D. (2019). Plants are capable of synthesizing animal steroid hormones. Molecules (Basel, Switzerland), 24(14), 2585, https://doi.org/10.3390/molecules24142585.
- Turk, H. (2021). Progesterone promotes mitochondrial respiration at the biochemical and molecular level in germinating maize seeds. Plants, 10(7), 1326, https://doi.org/10.3390/plants10071326.
- Xue, R., Wang, S., Xu, H., Zhang, P., Li, H., and Zhao, H. (2017). Progesterone increases photochemical efficiency of photosystem II in wheat under heat stress by facilitating D1 protein phosphorylation. Photosynthetica, 55, 664–670, https://doi.org/10.1007/s11099-016-0681-0.
- Yang, X. H., Xu, Z. H., and Xue, H. W. (2005). Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. The Plant Cell, 17, 116– 131, https://doi.org/10.1105/tpc.104.028381.