Açikbaş, B., and Bellitürk, K. (2016). The effect of vermicompost on root development of vine seedlings in 5BB/Thrace Ilkeren vaccination combination. Çukurova Journal of Agricultural and Food Sciences (Special Issue), 31(3), 179–184.
Aktaş, T. (2018). Vermikompostun farkli tekstüre sahip topraklarda bitki gelişimine ve topraklarin fiziksel kimyasal özelliklerine etkisi. Master’s thesis, Namik Kemal Üniversitesi, Türkiye.
Awika, H. O., Mishra, A. K., Gill, H., Dipiazza, J., Avila, C. A., and Joshi, V. (2021). Selection of nitrogen responsive root architectural traits in spinach using machine learning and genetic correlations. Scientific Reports, 11(1), 9536, https://doi.org/10.1038/s41598-021-87870-z.
Barlas, T., and Bellitürk, K. (2017). The importance of vermicompost on converting fertilization system from chemical to organic in Turkey. Paper presented at the International Symposium on EuroAsian Biodiversity (SEAB-2017), Minsk, Belarus, 129.
Barzegar, T., Mohammadi, S., and Ghahremani, Z. (2020). Effect of nitrogen and potassium fertilizer on growth, yield and chemical composition of sweet fennel. Journal of Plant Nutrition, 43(8), 1189–1204, https://doi.org/10.1080/01904167.2020.1724306.
Bayindir, S., and Kandemir, D. (2023). Root system architecture of interspecific rootstocks and its relationship with yield components in grafted tomato. Gesunde Pflanzen, 75, 329–341, https://doi.org/10.1007/s10343-022-00704-4.
Bellitürk, K. (2018). Vermicomposting in Turkey: Challenges and opportunities in future. Eurasian Journal of Forest Science, 6(4), 32–41, https://doi.org/10.31195/ejejfs.476504.
Bellitürk, K., Shrestha, P., and Görres, J. H. (2015). The importance of phytoremediation of heavy metal contaminated soil using vermicompost for sustainable agriculture. Rice Journal, 3, e114, https://doi.org/10.4172/2375-4338.1000e114.
Bellitürk, K., Turan, S., Göçmez, S., Adiloğlu, A., Solmaz, Y., and Karakaş, Ö. (2017). Zeytin fidani yetiştiriciliğinde vermikompost kullanimi. Bilimsel Araştirma Projesi.
Bidabadi, S. S., Afazel, M., and Poodeh, S. D. (2016). The effect of vermicompost leachate on morphological, physiological and biochemical indices of Stevia rebaudiana Bertoni in a soilless culture system. International Journal of Recycling of Organic Waste in Agriculture, 5, 251–262, https://doi.org/10.1007/s40093-016-0135-5.
Boldrin, D., Leung, A. K., and Bengough, A. G. (2017). Root biomechanical properties during establishment of woody perennials. Ecological Engineering, 109, 196–206, https://doi.org/10.1016/j.ecoleng.2017.05.002.
Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., and Scuse, D. (2016). WEKA manual for version 3-9-1 (pp. 1–341). Hamilton, New Zealand: University of Waikato.
Büyükfiliz, F. (2016). Vermikompost gübrelemesinin ayçiçeği (Helianthus annuus L.) bitkisinin verim ve bazi kalite parametreleri üzerine etkisi. Master’s thesis, Namik Kemal Üniversitesi, Türkiye.
Çetin, N., Karaman, K., Beyzi, E., Sağlam, C., and Demirel, B. (2021). Comparative evaluation of some quality characteristics of sunflower oilseeds (Helianthus annuus L.) through machine learning classifiers. Food Analytical Methods, 14, 1666–1681, https://doi.org/10.1007/s12161-021-02002-7.
Chattopadhyay, A. (2014). Effect of vermiwash and vermicompost on an ornamental flower, Zinnia sp. Journal of Horticulture, 1(3), 1000112, https://doi.org/10.4172/2376-0354.1000112.
Çitak, S., Sönmez, S., Koçak, F., and Yassin, S. (2011). The effects of vermicompost and barn manure applications on the development of spinach (Spinacia oleracea var. L.) plant soil fertility. Derim Journal, 28(1), 56–69.
Cui, J. L., Zhao, Y. P., Lu, Y. J., Chan, T. S., Zhang, L. L., Tsang, D. C., and Li, X. D. (2019). Distribution and speciation of copper in rice (Oryza sativa L.) from mining-impacted paddy soil: Implications for copper uptake mechanisms. Environment International, 126, 717–726, https://doi.org/10.1016/j.envint.2019.02.045.
Cunningham, S. J., and Holmes, G. (1999). Developing innovative applications in agriculture using data mining. Paper presented at the Southeast Asia Regional Computer Confederation Conference Singapore, 25–29.
Dorairaj, D., Suradi, M. F., Mansor, N. S., and Osman, N. (2020). Root architecture, rooting profiles and physiological responses of potential slope plants grown on acidic soil. PeerJ, 8, e9595, https://doi.org/10.7717/peerj.9595.
Dou, Y., and Meng, W. (2023). Comparative analysis of weka-based classification algorithms on medical diagnosis datasets. Technology and Health Care, 31(S1), 397–408, https://doi.org/10.3233/THC-236034.
Duarte, A. B., De Oliveira Ferreira, D., Ferreria, L. B., and Da Silva, F. L. (2022). Machine learning applied to the prediction of root architecture of soybean cultivars under two water availability conditions. Semina: Ciências Agrárias, 43(3), 1017–1036, https://doi.org/10.5433/1679-0359.2022v43n3p1017.
Elissen, H., Van Der Weide, R., and Gollenbeek, L. (2023). Effects of vermicompost on plant and soil characteristics – A literature overview. Report WPR-OT 995, Wageningen University & Research (pp. 1–23).
Flores, K. M. (2014). Root stimulation using vermi-products in grape vine propagations (p. 13). San Luis Obispo: California Polytechnic State University.
Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I. H., and Trigg, L. (2010). Weka-a machine learning workbench for data mining. In O. Maimon and L. Rokach (Eds), Data mining and knowledge discovery handbook (pp. 1269–1277). Boston, MA, USA: Springer, https://doi.org/10.1007/978-0-387-09823-4_66.
Gumus, Z. P., Ertas, H., Yasar, E., and Gumus, O. (2018). Classification of olive oils using chromatography, principal component analysis and artificial neural network modelling. Journal of Food Measurement and Characterization, 12, 1325–1333, https://doi.org/10.1007/S11694-018-9746-Z.
Harsányi, E., Bashir, B., Arshad, S., Ocwa, A., Vad, A., Alsalman, A., Bácskai, I., Rátonyi, T., Hijazi, O., Széles, A., and Mohammed, S. (2023). Data mining and machine learning algorithms for optimizing maize yield forecasting in central Europe. Agronomy, 13(5), 1297, https://doi.org/10.3390/agronomy13051297.
Hayat, F., Asghar, S., Yanmin, Z., Xue, T., Nawaz, M. A., Xu, X., Wang, Yi.; Wu, Ting., Zhang, X., Qiu, C., and Ha. (2020). Rootstock induced vigour is associated with physiological, biochemical and molecular changes in ‘Red Fuji’ apple. International Journal of Agriculture and Biology, 24(6), 1823–1834, https://doi.org/10.17957/IJAB/15.1627.
Hefley, M. W. (1979). Growth and foliar accumulation of mineral nutrient elements by Buxus sempervirens L. as affected by hydroponic nutrient level, soil type, soil pH and source of nitrogen. USA: University of Maryland, College Park.
Hinisli, N. (2014). Vermikompost gübresinin kivircik bitkisinin gelişmesi üzerine etkisinin belirlenmesi ve diğer bazi organik kaynakli gübrelerle karşilaştirilmasi. Master’s thesis, Namik Kemal Üniversitesi, Türkiye.
Johansen, C., Edwards, D. G., and Loneragan, J. F. (1968). Interaction between potassium and calcium in their absorption by intact barley plants. II. Effects of calcium and potassium concentration on potassium absorption. Plant Physiology, 43(10), 1722–1726, https://doi.org/10.1104/pp.43.10.1722.
Judd, L. A., Jackson, B. E., and Fonteno, W. C. (2015). Advancements in root growth measurement technologies and observation capabilities for container-grown plants. Plants, 4(3), 369–392, https://doi.org/10.3390/plants4030369.
Karademir, S., and Kibar, B. (2022). Influence of different vermicompost doses on growth, quality and element contents in curly lettuce (Lactuca sativa L. var. crispa). Kahramanmaraş Sütçü İmam Üniversitesi Tarim ve Doğa Dergisi, 25(Ek Sayi 2), 430–440, https://doi.org/10.18016/ksutarimdoga.vi.1047470.
Khan, A., and Ishaq, F. (2011). Chemical nutrient analysis of different composts (vermicompost and pitcompost) and their effect on the growth of a vegetative crop Pisum sativum. Asian Journal of Plant Science and Research, 1(1), 116–130.
Köhler, E. (2014). Buxaceae. In W. Greuter and R. Rankin Rodríguez (Eds), Flora de la República de Cuba, Series A., Plantas Vasculares, Fascículo (Vol. 19(1), p. 124). Königstein, Germany: Koeltz Scientific Books.
Kumar, S. S., and Madhu, S. (2016). Evaluating significance of vermicompost and intercropping Amorphophallus for integrated Indian goose berry orchard management. International Journal of Agriculture Sciences, 8(39), 1809–1812.
Linders, K. M., Santra, D., Schnable, J. C., and Sigmon, B. (2024). Variation in leaf chlorophyll concentration in response to nitrogen application across maize hybrids in contrasting environments. Micropublication Biology, 2024, https://doi.org/10.17912/micropub.biology.001115.
M’sehli, W., Youssfi, S., Donnini, S., Dell’orto, M., DeNisi, P., Zocchi, G., Abdelly, C., and Gharsalli, M. (2008). Root exudation and rhizosphere acidification by two lines of Medicago ciliaris in response to lime-induced iron deficiency. Plant and Soil, 312, 151–162, https://doi.org/10.1007/s11104-008-9638-9.
Makkar, C., Singh, J., and Parkash, C. (2017). Vermicompost and vermiwash as supplement to improve seedling, plant growth and yield in Linum usitassimum L. for organic agriculture. International Journal of Recycling of Organic Waste in Agriculture, 6, 203–218, https://doi.org/10.1007/s40093-017-0168-4.
Marschner, P. (2012). Rhizosphere biology. In P. Marschner (Ed.), Marschner’s Mineral Nutrition of Higher Plants (pp. 369–388). London, UK: Academic Press.
Melash, A. A., Bytyqi, B., Nyandi, M. S., Vad, A. M., and Ábrahám, ÉB. (2023). Chlorophyll meter: A precision agricultural decision-making tool for nutrient supply in durum wheat (Triticum turgidum L.) cultivation under drought conditions. Life, 13(3), 824, https://doi.org/10.3390/life13030824.
Mengistu, T., Gebrekidan, H., Kibret, K., Woldetsadik, K., Shimelis, B., and Yadav, H. (2017). The integrated use of excreta-based vermicompost and inorganic NP fertilizer on tomato (Solanum lycopersicum L.) fruit yield, quality and soil fertility. International Journal of Recycling of Organic Waste in Agriculture, 6, 63–77, https://doi.org/10.1007/s40093-017-0153-y.
Moldoveanu, M., Stănescu, S. V., and Gălie, A. C. (2023). Post-construction, hydromorphological cumulative impact assessment: An approach at the waterbody level integrating different spatial scales. Water, 15(3), 382, https://doi.org/10.3390/w15030382.
Moon, T., Ahn, T. I., and Son, J. E. (2018). Forecasting root-zone electrical conductivity of nutrient solutions in closed-loop soilless cultures via a recurrent neural network using environmental and cultivation information. Frontiers in Plant Science, 9, 859, https://doi.org/10.3389/fpls.2018.00859.
Nafie Ali, F. M., and Mohamed Hamed, A. A. (2018). Usage Apriori and clustering algorithms in WEKA tools to mining dataset of traffic accidents. Journal of Information and Telecommunication, 2(3), 231–245, https://doi.org/10.1080/24751839.2018.1448205.
Niemiera, A. X. (2018). Selecting landscape plants: Boxwoods. Retrieved from https://vtechworks.lib.vt.edu/bitstream/handle/10919/84266/HORT-290.pdf (date of access: 25 June 2024).
Paez-Garcia, A., Motes, C. M., Scheible, W. R., Chen, R., Blancaflor, E. B., and Monteros, M. J. (2015). Root traits and phenotyping strategies for plant improvement. Plants, 4(2), 334–355, https://doi.org/10.3390/plants4020334.
Pestana, M., De Varennes, A., Abadía, J., and Faria, E. A. (2005). Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae, 104(1), 25–36, https://doi.org/10.1016/j.scienta.2004.07.007.
Purnomo, V. 2024. Retrieved from https://www.linkedin.com/pulse/implementation-machine-learning-agriculture-crop-using-wisnu-purnomo-l1roc. (date of access: 15 June 2024).
Rains, D. W., and Floyd, R. A. (1970). Influence of calcium on sodium and potassium absorption by fresh and aged bean stem slices. Plant Physiology, 46(1), 93–98, https://doi.org/10.1104/pp.46.1.93.
Rehman, S. U., De Castro, F., Aprile, A., Benedetti, M., and Fanizzi, F. P. (2023). Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. Agronomy, 13(4), 1134, https://doi.org/10.3390/agronomy13041134.
Sari, Ö., and Çelikel, F. G. (2019). Türkiye’nin Şimşirleri (Buxus sempervirens ve Buxus balearica) ve Mevcut Tehditler, VII. Süs Bitkileri Kongresi ve I. Uluslararasi Süs Bitkileri Kongresi, 9-10-11 Ekim 2019, Bursa, Türkiye, pp. 383–393.
Sinha, R. K., Agarwal, S., Chauhan, K., and Valani, D. (2010). The wonders of earthworms & its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers. Agricultural Sciences, 1(2), 76, https://doi.org/10.4236/as.2010.12011.
Soltanpour, P. N., and Workman, S. M. (1981). Soiltesting methods used at Colorado State University Soil-Testing Laboratory for the evaluation of fertility, salinity, sodicity, and trace-element toxicity. Technical Bulletin 142 (No. NP-2906200), Colorado State University, Fort Collins (USA), Colorado State University Experiment Station.
Suganya, R., Agasthiya, C., Ignatius, C., Aswin, S., Murugesen, P., and Amuthalingeswaran, C. (2021). Rainfall forecasting for raising the yield production using machine learning algorithms. In V. L. N. Komanapalli, N. Sivakumaran and S. Hampannavar (Eds), Advances in Automation, Signal Processing, Instrumentation, and Control: Select Proceedings of i-CASIC 2020 (pp. 1693–1708). Singapore: Springer, https://doi.org/10.1007/978-981-15-8221-9_158.
Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., Van Grinsven, H., and Winiwarter, W. (2011). Too much of a good thing. Nature, 472(7342), 159–161, https://doi.org/10.1038/472159a.
Talaat, F. M. (2023). Crop yield prediction algorithm (CYPA) in precision agriculture based on IoT techniques and climate changes. Neural Computing and Applications, 35, 17281–17292, https://doi.org/10.1007/s00521-023-08619-5.
Toprak, B., Yildiz, O., Sarginci, M., Güner, Şt., Pekşen, A., and Çakir, E. A. (2016). Mikoriza Uygulamasinin Karaçam (Pinus nigra) fidanlarinin morfolojik özelliklerine etkisi. Düzce Üniversitesi Orman Fakültesi Ormancilik Dergisi, 12(2), 258–269.
Tränkner, M., Tavakol, E., and Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431, https://doi.org/10.1111/ppl.12747.
Tütüncü, M. (2024). Effects of protein hydrolysate derived from anchovy by-product on plant growth of primrose and root system architecture analysis with machine learning. Horticulturae, 10(4), 400, https://doi.org/10.3390/horticulturae10040400.
USDA-NASS (2020). Census of horticultural specialties-2020. Retrieved from https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Census_of_Horticulture_Specialties/hortic_1_0018_0019.pdf (date of access: 14 June 2024).
Verma, B. C., Pramanik, P., and Bhaduri, D. (2020). Organic fertilizers for sustainable soil and environmental management. In R. Meena (Ed.), Nutrient dynamics for sustainable crop production (pp. 289–313). Singapore: Springer, https://doi.org/10.1007/978-981-13-8660-2_10.
Verma, S. K., Sahu, P. K., Kumar, K., Pal, G., Gond, S. K., Kharwar, R. N., and White, J. F. (2021). Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology, 131(5), 2161–2177, https://doi.org/10.1111/jam.15111.
Wen, T., Dong, L., Wang, L., Ma, F., Zou, Y., and Li, C. (2018). Changes in root architecture and endogenous hormone levels in two Malus rootstocks under alkali stress. Scientia Horticulturae, 235, 198–204, https://doi.org/10.1016/j.scienta.2017.09.015.
Xu, C., Fu, L., Lin, T., Li, W., and Ma, S. (2022). Machine learning in petrophysics: Advantages and limitations. Artificial Intelligence in Geosciences, 3, 157–161, https://doi.org/10.1016/j.aiig.2022.11.004.
Xu, X., He, P., Yang, F., Ma, J., Pampolino, M. F., Johnston, A. M., and Zhou, W. (2017). Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crops Research, 206, 33–42, https://doi.org/10.1016/j.fcr.2017.02.011.
Yeh, D. M., Lin, L., and Wright, C. J. (2000). Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot–root ratio of Spathiphyllum. Scientia Horticulturae, 86(3), 223–233, https://doi.org/10.1016/S0304-4238(00)00152-7.
Yoosefzadeh-Najafabadi, M., Earl, H. J., Tulpan, D., Sulik, J., and Eskandari, M. (2021). Application of machine learning algorithms in plant breeding: Predicting yield from hyperspectral reflectance in soybean. Frontiers in Plant Science, 11, 624273, https://doi.org/10.3389/fpls.2020.624273.
Younis, A., Anjum, S., Riaz, A., Hameed, M., Tariq, U., and Ahsan, M. (2014). Production of quality dahlia (Dahlia variabilis cv. Redskin) flowers by efficient nutrients management running title: Plant nutrition impacts on dahlia quality. American-Eurasian Journal of Agricultural & Environmental Sciences, 14(2), 137–142, https://doi.org/10.5829/idosi.aejaes.2014.14.02.12267.
Yuan, H., Ge, T., Zhou, P., Liu, S., Roberts, P., Zhu, H., and Wu, J. (2013). Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. Journal of Soils and Sediments, 13, 877–886, https://doi.org/10.1007/s11368-013-0664-8.
Yüca, İ, and Pirlak, L. (2022). Effects of vermicompost extract on growth and development of 0900 Ziraat sweet cherry cultivar (Prunus avium L.) sapling. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 19(2), 183–190, https://doi.org/10.25308/aduziraat.1061088.
Zahmacioğlu, A., AhI, Y., and Bellitürk, K. (2017). Determination of vermicompost and ammonium nitrate applications effectiveness on broccoli with soil and leaf analyses. Paper presented at the VIII International Scientific Agriculture Symposium, “Agrosym 2017”, Jahorina, Bosnia and Herzegovina, Book of Proceedings, 2017, pp. 1660–1665 ref. 22.
Zheng, S. J., Tang, C., Arakawa, Y., and Masaoka, Y. (2003). The responses of red clover (Trifolium pratense L.) to iron deficiency: A root Fe (III) chelate reductase. Plant Science, 164(5), 679–687, https://doi.org/10.1016/S0168-9452(02)00422-3.
Zou, Y. N., Wang, P., Liu, C. Y., Ni, Q. D., Zhang, D. J., and Wu, Q. S. (2017). Mycorrhizal Trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Scientific Reports, 7(1), 41134, https://doi.org/10.1038/srep41134.