Have a personal or library account? Click to login

Bioactive compounds and physical attributes of Cornus mas genotypes through multivariate approaches

Open Access
|Sep 2020

References

  1. Akçay, M. E., and Yalçinkaya, E. (2003). Yalova’da Yetiştiriciliği Yapılan Bazı Kızılcık (Cornus mas L.) Tiplerinin Döllenme Biyolojisi Üzerine Araştırmalar. Türkiye IV. Ulusal Bahçe Bitkileri Kongresi (pp. 280–281). Antalya, Turkey.
  2. Akpunar, E. (2015). Türk Lokumu Üretiminde Kızılcık (Ergen) Meyvesinin Doğal Renklendirici Olarak Kullanılması ve Depolama Stabilitesinin Araştırılması. Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Ana Bilim Dalı, Yüksek Lisans Tezi.
  3. Benvenuti, S., Pellati, F., Melegari, M., and Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69(3), 164–169.
  4. Beyhan, Ö., Elmastaş, M., and Gedikli, F. (2010). Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). Journal of Medicinal Plants Research, 4, 1065–1072.
  5. Bijelic, S., Golosin, B., Todorovic, J. N., and Cerovic, S. (2011). Morphological characteristics of best Cornelian cherry (Cornus mas L.) genotypes selected in Serbia. Genetic Resources and Crop Evolution, 58, 689–695.
  6. Bolat, I., and Ikinci A. (2020). Investigation on heat requirements and fruit growth of some early maturing apricot cultıvars in semiarıd conditions. Fresenius Environmental Bulletin, 29(3), 1542–1549.
  7. Bozdogan, A. (2017). Viscosity and physicochemical properties of cornelian cherry (Cornus mas L.) concentrate. Food Measure, 11, 1326–1332.
  8. Brand-Williams, W., Cuvelier, M. E., and Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30.
  9. Brindza, P., Brindza, J., Toth, D., Klimenko, S. V., and Grigorieva, O. (2009). Biological and commercial characteristics of cornelian cherry (Cornus mas L.) population in the Gemer region of Slovakia. Acta Horticulturae, 818, 85–94.
  10. Celep, E., Aydin, A., Kirmizibekmez, H., and Yesilada, E. (2013). Appraisal of in vitro and in vivo antioxidant activity potential of cornelian cherry leaves. Food and Chemical Toxicology, 62, 448–455.
  11. Chang, C. C., Yang, M. H., Wen, H. M., and Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 13–21.
  12. Coksoyler, D. E. (2018). Kızılcık çekirdeğinden elde edilen aktif karbonun tekstil boyar maddesi olan rhodamine B’yi adsorplama özellikleri. Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Yüksek Lisans Tezi.
  13. Colak, A. M., Kupe, M., Bozhuyuk, R. M., Ercisli, S., and Gundogdu, M. (2019). Identification of some fruit characteristics in wild bilberry (Vaccinium myrtillus L.) accessions from Eastern Anatolia. Gesunde Pflanzen, 70, 31–38.
  14. Cosmulescu, S., Trandafir, I., and Cornescu, F. (2019). Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian cherry (Cornus mas L.) wild genotypes. Notulae Botanicae Horti Agrobotanici, 47(2), 390–394.
  15. Da Ronch, F., Caudullo, G., Houston Durrant, T. and De Rigo D. (2016). Cornus mas in Europe: Distribution, habitat, usage and threats. European atlas of forest tree species (pp. 82–83). Publication Office of the European Union, Luxembourg.
  16. Demir, B., Sayinci, B., Çetin, N., Yaman, M., Çömlek, R., Aydin, Y., and Sütyemez, M. (2018). Elliptic Fourier based analysis and multivariate approaches for size and shape distinctions of walnut (Juglans regia L.) genotypes. Grasas y Aceites, 69(4), 1–12.
  17. Deng, S., West, B. J., and Jensen, C. J. (2013). UPLC–TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. Journal of Analytical Methods in Chemistry, 2013(8), 710972.
  18. Didin, M., Kizilaslan, A., and Fenercioğlu, H. (2000). Malatya’da yetiştirilen bazı kızılcık çeşitlerinin nektara işlenmeye uygunluklarının belirlenmesi üzerinde bir araştırma. GIDA, 25(6), 435–441.
  19. Dragovic-Uzelac, V., Levaj, B., Bursac, D., Pedisic, S., Radojcic, I., and Bisko, A. (2007). Total phenolics and antioxidant capacity assays of selected fruits. Agriculturae Conspectus Scientificus, 72(4), 279–284.
  20. Elgin, Ş. (2019). Kızılcık (Cornus mas) ekstresi ilaveli pişirilmiş köftelerin donmuş muhafazası sırasında fizikokimyasal özelliklerinin incelenmesi. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Ana Bilim Dalı, Yüksek Lisans Tezi.
  21. Ercisli, S., Ipek, A., and Barut, E. (2011). SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). Biochemical Genetics, 49(9–10), 555–561.
  22. Ercisli, S., Orhan, E., Esitken, A., Yildirim, N., and Agar, G. (2008). Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genetic Resources and Crop Evolution, 55(4), 613–618.
  23. Ercisli, S., Sayinci, B., Kara, M., Yildiz, C., and Ozturk, I. (2012). Determination of size and shape attributes of walnut (Juglans regia L.) genotypes using image processing. Scientia Horticulturae, 133, 47–55.
  24. Ergezer, H., Gökçe, R., Elgin, Ş., and Akcan, T. (2018). Kızılcık (Cornus mas L.) ekstraktı kullanımının sucuk kalite karakteristikleri üzerine etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(7), 1376–1381.
  25. Ersoy, N., Kupe, M., Gundogdu, M., Ilhan, G., and Ercisli, S. (2018a). Phytochemical and antioxidant diversity in fruits of currant (Ribes spp.) cultivars, Notulae Botanicae Horti Agrobotanici, 46(2), 381–387.
  26. Ersoy, N., Kupe, M., Sagbas, H. I., and Ercisli, S. (2018b). Phytochemical diversity among barberry (Berberis vulgaris L.), Notulae Botanicae Horti Agrobotanici, 46(2), 198–204.
  27. Eyde, R. H. (1988). Comprehending Cornus: puzzles and progress in the systematics of the dogwoods. The Botanical Review, 54(3), 233–351.
  28. Faostat. (2018). Retrieved from http://www.fao.org/faostat/en/#data/QC. Accessed 15/04/2020.
  29. Firatligil-Durmuş, E., Šárka, E., Bubník, Z., Schejbal, M., and Kadlec, P. (2010). Size properties of legume seeds of different varieties using image analysis. Journal of Food Engineering, 99(4), 445–451.
  30. Fooddata Central. (2019). Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/171722/nutrients. Accessed 15/04/2020.
  31. Gundesli M. A., Korkmaz, N., and Okatan, V. (2019). Polyphenol content and antioxidant capacity of berries: A review. International Journal of Agriculture Forestr y and Life Sciences, 3(2), 350–361.
  32. Gündüz, K., Saraçoğlu, O., Özgen, M., and Serçe, S. (2013). Antioksidant, Physical and chemical characteristics of Cornelian Cherry fruits (Cornus mas L.) at different stages of ripeness. Acta Scientiarum Polonorum, Hortorum Cultus 12(4), 59–66.
  33. Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.
  34. Hassanpour, H., Hamidoghli, Y., Hajilo, J., and Adlipour, M. (2011). Antioxidant capacity and phytochemical proper ties of cornelian cherry (Cornus mas L.) genotypes in Iran. Scientia Horticulturae, 129, 459–463.
  35. Iwata, H., and Ukai, Y. (2002). SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93, 384–385.
  36. Kara, M. (2017). Biyolojik Ürünlerin Fiziksel Ürünleri (Tarımsal Ürün ve Gıdaları İçerir). Güven® Bilimsel, İzmir, Birinci Baskı, ISBN: 978-975-6240-56-4, 327s (in Turkish).
  37. Klimenko, S. (2004). The Cornelian cherry (Cornus mas L.); collection, preservation and utilization of genetic resources. Journal of Fruit and Ornamental Plant Research, 12(2), 93–98.
  38. Klymenko, S., Kucharska, A.Z., Sokol-Letowska, A., and Piorecki. N. (2019). Antıoxıdant activities and phenolic compounds in fruits of cultivars of cornelian cherry (Cornus mas L.). Agrobiodiversity for improving nutrition. Health and Life Quality, (3), 484–499.
  39. Kucharska, A. Z. (2012). Active Compounds of Cornelian Cherry Fruit (Cornus mas L.) Wydawnictwo Uniwersytetu Przyrodniczego Wrocław, Poland.
  40. Kucharska, A. Z., Sokol-Lętowska, A., and Piorecki, N. (2011). Morphological, physical & chemical, and antioxidant profiles of polish varieties of cornelian cherry fruit (Cornus mas L.). Żywność Nauka Technologia Jakość (Poland), 3, 78–89.
  41. Kucharska, A. Z., Szumny, A., Soko-Letowska, A., Piorecki, N., and Klymenko, S. V. (2015). Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. Journal of Food Composition and Analysis, 40, 95–102.
  42. Mertoglu, K., Evrenosoglu, Y., and Polat, M. (2019). Combined effects of ethephon and mepiquat chloride on late blooming, fruit set, and phytochemical characteristics of Black Diamond plum. Turkish Journal of Agriculture & Forestry, 43(6), 544–553.
  43. Mertoglu, K., Gülbandilar, A., and Bulduk, İ. (2020). Growing conditions effect on fruit phytochemical composition and anti-microbial activity of plum (cv. Black Diamond). International Journal of Agriculture Forestry and Life Sciences, 4(1), 56–61.
  44. Mikaili, P., Koohirostamkolaei, M., Babaeimarzangou, S. S., Aghajanshakeri, S., Moloudizargari, M., Gamchi, N. S., and Toloomoghaddam, S. (2013). Therapeutic uses and pharmacological effects of Cornus mas: a review. Journal of Pharmaceutical and Biomedical Sciences, 35, 1732–1738.
  45. Mohsenin, N. N. (1986). Physical properties of plant and animal materials. New York, NY: Gordon and Breach Science Publishers.
  46. Neto, J. C., Meyer, G. E., Jones, D. D., and Samal, A. K. (2006). Plant species identification using Elliptic Fourier leaf shape analysis. Computers and Electronics in Agriculture, 50, 121–134.
  47. Okan, O., Serencam, H., Baltas, N., and Can, Z. (2019). Some edible forest fruits their in vitro antioxidant activities, phenolic compounds and some enzyme inhibition effects. Fresenius Enviromental, 28(8), 6090–6098.
  48. Olajide, J. O., and Ade-Omowaye, B. I. O. (1999). Some physical properties of locust bean seed. Journal of Agricultural Engineering Research, 74, 213–215.
  49. Ozgen, F. (2015). Experimental investigation of drying characteristics of cornelian cherry fruits (Cornus mas L.). Heat Mass Transfer, 51, 343–352.
  50. Özkan-Koca, A. (2012). Ortadoğu’da yayılış gösteren Apis mellifera L. (Hymenoptera: Apidae) alttürlerinin geometrik morfometri yöntemiyle analizi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı (Doktora Tezi), Ankara, 167 s.
  51. Sayinci, B. (2016). Poliasetal (POM) meme plakalarının orifis geometrisinde üretim kusurlarının eliptik fourier tanımlayıcılarıyla tespiti. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 30(1), 57–73.
  52. Sayinci, B., Ercişli, S., Akbulut, M., Şavşatli, Y., and Baykal, H. (2015a). Determination of shape in fruits of cherry laurel (Prunus laurocerasus) accessions by using Elliptic Fourier analysis. Acta Scientiarum Polonorum, Hortorum Cultus, 14(1), 63–82.
  53. Sayinci, B., Kara, M., Ercişli, S., Duyar, Ö., and Ertürk, Y. (2015b). Elliptic Fourier analysis for shape distinction of Turkish hazelnut genotypes. Erwerbs-Obstbau, 57(1), 1–11.
  54. Selçuk, E., and Özrenk, K. (2011). Erzincan yöresinde yetiştirilen kızılcıkların (Cornus mas L.) fenolojik ve pomolojik özelliklerinin belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(4), 23–30.
  55. Sochorova, L., Kleidus, B., Baron, M., Jurikova, T., Mlcek, J., Sochor, J., Ercisli, S., and Kupe, M. (2019). Assessment of antioxidants by HPLC-MS in grapevine seeds. Acta Scientiarum Polonorum, Hortorum Cultus, 18, 17–28.
  56. Szot, I., Lipa, T., and Sosnowska, B. (2019a). Evaluation of yield and fruit quality of several ecotypes of cornelian cherry (Cornus mas L.) in Polish conditions. Acta Scientiarum Polonorum, Hortorum Cultus, 18(6), 141–150.
  57. Szot, I., Szot, P., Lipa, T., Sosnowska, B., and Dobrzański, B. (2019b). Determination of physical and chemical properties of cornelian cherry (Cornus mas L.) fruits depending on degree of ripening and ecotypes. Acta Scientiarum Polonorum, Hortorum Cultus, 18(2), 251–262.
  58. TubiVes. (2020). Retrieved from http://194.27.225.161/yasin/tubives/index.php?sayfa=1&tax_id=4505. Accessed 15/04/2020.
  59. Tural, S., and Koca, İ. (2008). Physico-chemical and antioxidant proper ties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116, 362–366.
  60. West, B. J., Deng, S., Jensen, C. J., Palu, A. K., and Berrio, L. F. (2012). Antioxidant, toxicity, and iridoid tests of processed Cornelian cherry fruits. International Journal of Food Science and Technology, 47(7), 1392–1397.
  61. Yilmaz, K. U., Ercisli, S., Zengin, Y., Sengul, M., and Kafkas, E. Y. (2009). Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chemistry, 114, 408–412.
DOI: https://doi.org/10.2478/fhort-2020-0018 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 189 - 202
Submitted on: Jul 8, 2020
Accepted on: Aug 18, 2020
Published on: Sep 19, 2020
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Bünyamin Demir, Bahadır Sayinci, Ahmet Sümbül, Mehmet Yaman, Ercan Yildiz, Necati Çetin, Orhan Karakaya, Sezai Ercişli, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.