Have a personal or library account? Click to login
Effect of foliar application of Trichoderma on the quality of tomato fruits grown in different hydroponic substrates Cover

Effect of foliar application of Trichoderma on the quality of tomato fruits grown in different hydroponic substrates

Open Access
|Dec 2019

References

  1. AOAC, 2000. Official Methods of Analysis of AOAC International (17th edition). Association of Official Analysis Chemists International, Methods No. 2-66, AOAC, Washington, DC.
  2. Bal U., Altintas S., 2006. Effects of Trichoderma harzianum on the yield and fruit quality of tomato plants (Lycopersicon esculentum) grown in an unheated greenhouse. Aust. J. Exp. Agr. 46(1), 131-136.10.1071/EA04003
  3. Barrett D.M., Anthon G.E., 2008. Color quality of tomato products. In: Color Quality of Fresh and Processed Foods. C.A. Culver and R.E. Wrolstad (Eds), American Chemical Society, Washington, DC, USA, 131-139.10.1021/bk-2008-0983.ch010
  4. Bertin N., Génard M., 2018. Tomato quality as influenced by preharvest factors. Sci. Hortic. 233, 264-276.10.1016/j.scienta.2018.01.056
  5. Biais B., Benard C., Beauvoit B., Colombi S., Prodhomme D., Menard G., et al., 2014. Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiol. 164(3), 1204-1221.10.1104/pp.113.231241393861424474652
  6. Causse M., 2002. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53, 2089-2098.10.1093/jxb/erf05812324532
  7. Chen M., Jiang Q., Yin X.R., Lin Q., Chen J.Y., Allan A.C., et al., 2012. Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Sci. Hortic. 147, 118-125.10.1016/j.scienta.2012.09.011
  8. Davies J.N., Hobson G.E., 1981. The constituents of tomato fruit – the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr. 15(3), 205-280.10.1080/104083981095273177030623
  9. Dumville J.C., Fry S.C., 2003. Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217(6), 951-961.10.1007/s00425-003-1061-012838420
  10. FAOSTAT, 2015. Food and Agriculture Organization of the United Nations. Available online at www.fao.org/faostat/; cited on 15 Jun 2019.
  11. Figàs M.R., Prohens J., Raigón M.D., Fita A., García-Martínez M.D., Casanova C., et al., 2015. Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chem. 187, 517-524.10.1016/j.foodchem.2015.04.08325977058
  12. Gautier H., Diakou-Verdin V., Bénard C., Reich M., Buret M., Bourgaud F., et al., 2008. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 56(4), 1241-1250.10.1021/jf072196t18237131
  13. Génard M., Memmah M.M., Quilot-Turion B., Vercambre G., Baldazzi V., Le Bot J., 2016. Process-based simulation models are essential tools for virtual profiling and design of ideotypes: Example of fruit and root. In: Crop Systems Biology. X. Yin and P. Struik (Eds), Springer, Cham, Switzerland, 83-104.10.1007/978-3-319-20562-5_4
  14. Heredia A., Barrera C., Andrés A., 2007. Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. J. Food Eng. 80(1), 111-118.10.1016/j.jfoodeng.2006.04.056
  15. Heuvelink E., 2018. Tomatoes. CABI, Boston, MA, USA.10.1079/9781780641935.0000
  16. Illera A.E., Sanz M.T., Trigueros E., Beltrán S., Melgosa R., 2018. Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. J. Food Eng. 239, 64-71.10.1016/j.jfoodeng.2018.06.027
  17. InfoStat, 2018. Statistical Software. Available online at www.infostat.com.ar; cited on 28 Sep 2019.
  18. Jones R.A., Scott S.J., 1983. Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 32(3), 845-855.10.1007/BF00042166
  19. Keswani C., Mishra S., Sarma B.K., Singh S.P., Singh H.B., 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98(2), 533-544.10.1007/s00253-013-5344-5
  20. Klunklin W., Savage G., 2017. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods 6, 56.10.3390/foods6080056
  21. López-Bucio J., Pelagio-Flores R., Herrera-Estrella A., 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196, 109-123.10.1016/j.scienta.2015.08.043
  22. Merchán-Gaitán J.V., Ferrucho R.L., Álvarez-Herrera J.G., 2014. Effect of two Trichoderma strains on Botrytis cinerea control and fruit quality for the strawberry (Fragaria sp.). Rev. Colomb. Cienc. Hortic. 8(1), 44-56.10.17584/rcch.2014v8i1.2799
  23. Mohamed S.A., Christensen T.M.I.E., Mikkelsen J.D., 2003. New polygalacturonases from Trichoderma reesei: characterization and their specificities to partially methylated and acetylated pectins. Carbohydr. Res. 338(6), 515-524.10.1016/S0008-6215(02)00398-1
  24. Molla A.H., Manjurul Haque M., Amdadul Haque M., Ilias G.N.M., 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric. Res. 1(3), 265-272.10.1007/s40003-012-0025-7
  25. Nzanza B., Marais D., Soundy P., 2012. Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta Agric. Scand. B Soil Plant Sci. 62(3), 209-215.10.1080/09064710.2011.598544
  26. Oltman A.E., Jervis S.M., Drake M.A., 2014. Consumer attitudes and preferences for fresh market tomatoes. J. Food Sci. 79(10), S2091-S2097.10.1111/1750-3841.1263825219281
  27. Palaniappan S., Sastry S.K., 1991. Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage, and particle size. J. Food Process Eng. 14(4), 247-260.10.1111/j.1745-4530.1991.tb00135.x
  28. Pascale A., Vinale F., Manganiello G., Nigro M., Lanzuise S., Ruocco M., et al., 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot. 92, 176-181.10.1016/j.cropro.2016.11.010
  29. Ruiz-Cisneros M.F., Ornelas-Paz J.D.J., Olivas-Orozco G.I., Acosta-Muñiz C.H., Sepúlveda-Ahumada D.R., Pérez-Corral D.A., et al., 2018. Effect of Trichoderma spp. and phytopathogenic fungi on plant growth and tomato fruit quality. Mex. J. Phytopathol. 36, 444-456.10.18781/R.MEX.FIT.1804-5
  30. Shoresh M., Harman G.E., 2008. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol. 147(4), 2147-2163.10.1104/pp.108.123810249261218562766
  31. Steiner A.A., 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15(2), 134-154.10.1007/BF01347224
  32. Thompson K.A., Marshall M.R., Sims C.A., Wei C.I., Sargent S.A., Scott J.W., 2000. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J. Food Sci. 65(5), 791-795.10.1111/j.1365-2621.2000.tb13588.x
  33. Tigist M., Workneh T.S., Woldetsadik K., 2013. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 50(3), 477-486.10.1007/s13197-011-0378-0360255024425942
  34. USDA, 1991. United States Standards for Grades of Fresh Tomatoes. Available from: www.ams.usda.gov/sites/default/files/media/Tomato_Standard%5B1%5D.pdf; cited on 21 Jun 2019.
  35. Valero D., Serrano M., 2010. Postharvest Biology and Technology for Preserving Fruit Quality. CRC Press, Boca Raton, FL, USA.10.1201/9781439802670
  36. White P.J., 2002. Recent advances in fruit development and ripening: an overview. J. Exp. Bot. 53(377), 1995-2000.10.1093/jxb/erf10512324524
  37. Winsor G.W., Davies J.N., Massey D.M., 1962. Composition of tomato fruit. III.– Juices from whole fruit and locules at different stages of ripeness. J. Sci. Food Agric. 13(2), 108-115.10.1002/jsfa.2740130209
  38. Wormit A., Usadel B., 2018. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 19(10), 1-19.10.3390/ijms19102878621351030248977
DOI: https://doi.org/10.2478/fhort-2019-0028 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 355 - 364
Submitted on: Jul 10, 2019
Accepted on: Oct 10, 2019
Published on: Dec 26, 2019
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Rogelio Enrique Palacios-Torres, Aldo Guadalupe Bustamante-Ortiz, Luis Alberto Prieto-Baeza, Hipólito Hernández-Hernández, Ana Rosa Ramírez-Seañez, José Antonio Yam-Tzec, Gabriela Díaz-Félix, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.