References
- AOAC, 2000. Official Methods of Analysis of AOAC International (17th edition). Association of Official Analysis Chemists International, Methods No. 2-66, AOAC, Washington, DC.
- Bal U., Altintas S., 2006. Effects of Trichoderma harzianum on the yield and fruit quality of tomato plants (Lycopersicon esculentum) grown in an unheated greenhouse. Aust. J. Exp. Agr. 46(1), 131-136.10.1071/EA04003
- Barrett D.M., Anthon G.E., 2008. Color quality of tomato products. In: Color Quality of Fresh and Processed Foods. C.A. Culver and R.E. Wrolstad (Eds), American Chemical Society, Washington, DC, USA, 131-139.10.1021/bk-2008-0983.ch010
- Bertin N., Génard M., 2018. Tomato quality as influenced by preharvest factors. Sci. Hortic. 233, 264-276.10.1016/j.scienta.2018.01.056
- Biais B., Benard C., Beauvoit B., Colombi S., Prodhomme D., Menard G., et al., 2014. Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiol. 164(3), 1204-1221.10.1104/pp.113.231241393861424474652
- Causse M., 2002. QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53, 2089-2098.10.1093/jxb/erf05812324532
- Chen M., Jiang Q., Yin X.R., Lin Q., Chen J.Y., Allan A.C., et al., 2012. Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit. Sci. Hortic. 147, 118-125.10.1016/j.scienta.2012.09.011
- Davies J.N., Hobson G.E., 1981. The constituents of tomato fruit – the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Nutr. 15(3), 205-280.10.1080/104083981095273177030623
- Dumville J.C., Fry S.C., 2003. Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217(6), 951-961.10.1007/s00425-003-1061-012838420
- FAOSTAT, 2015. Food and Agriculture Organization of the United Nations. Available online at www.fao.org/faostat/; cited on 15 Jun 2019.
- Figàs M.R., Prohens J., Raigón M.D., Fita A., García-Martínez M.D., Casanova C., et al., 2015. Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chem. 187, 517-524.10.1016/j.foodchem.2015.04.08325977058
- Gautier H., Diakou-Verdin V., Bénard C., Reich M., Buret M., Bourgaud F., et al., 2008. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 56(4), 1241-1250.10.1021/jf072196t18237131
- Génard M., Memmah M.M., Quilot-Turion B., Vercambre G., Baldazzi V., Le Bot J., 2016. Process-based simulation models are essential tools for virtual profiling and design of ideotypes: Example of fruit and root. In: Crop Systems Biology. X. Yin and P. Struik (Eds), Springer, Cham, Switzerland, 83-104.10.1007/978-3-319-20562-5_4
- Heredia A., Barrera C., Andrés A., 2007. Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. J. Food Eng. 80(1), 111-118.10.1016/j.jfoodeng.2006.04.056
- Heuvelink E., 2018. Tomatoes. CABI, Boston, MA, USA.10.1079/9781780641935.0000
- Illera A.E., Sanz M.T., Trigueros E., Beltrán S., Melgosa R., 2018. Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. J. Food Eng. 239, 64-71.10.1016/j.jfoodeng.2018.06.027
- InfoStat, 2018. Statistical Software. Available online at www.infostat.com.ar; cited on 28 Sep 2019.
- Jones R.A., Scott S.J., 1983. Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 32(3), 845-855.10.1007/BF00042166
- Keswani C., Mishra S., Sarma B.K., Singh S.P., Singh H.B., 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol. 98(2), 533-544.10.1007/s00253-013-5344-5
- Klunklin W., Savage G., 2017. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods 6, 56.10.3390/foods6080056
- López-Bucio J., Pelagio-Flores R., Herrera-Estrella A., 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196, 109-123.10.1016/j.scienta.2015.08.043
- Merchán-Gaitán J.V., Ferrucho R.L., Álvarez-Herrera J.G., 2014. Effect of two Trichoderma strains on Botrytis cinerea control and fruit quality for the strawberry (Fragaria sp.). Rev. Colomb. Cienc. Hortic. 8(1), 44-56.10.17584/rcch.2014v8i1.2799
- Mohamed S.A., Christensen T.M.I.E., Mikkelsen J.D., 2003. New polygalacturonases from Trichoderma reesei: characterization and their specificities to partially methylated and acetylated pectins. Carbohydr. Res. 338(6), 515-524.10.1016/S0008-6215(02)00398-1
- Molla A.H., Manjurul Haque M., Amdadul Haque M., Ilias G.N.M., 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric. Res. 1(3), 265-272.10.1007/s40003-012-0025-7
- Nzanza B., Marais D., Soundy P., 2012. Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscular mycorrhizal fungi under field conditions. Acta Agric. Scand. B Soil Plant Sci. 62(3), 209-215.10.1080/09064710.2011.598544
- Oltman A.E., Jervis S.M., Drake M.A., 2014. Consumer attitudes and preferences for fresh market tomatoes. J. Food Sci. 79(10), S2091-S2097.10.1111/1750-3841.1263825219281
- Palaniappan S., Sastry S.K., 1991. Electrical conductivity of selected juices: influences of temperature, solids content, applied voltage, and particle size. J. Food Process Eng. 14(4), 247-260.10.1111/j.1745-4530.1991.tb00135.x
- Pascale A., Vinale F., Manganiello G., Nigro M., Lanzuise S., Ruocco M., et al., 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot. 92, 176-181.10.1016/j.cropro.2016.11.010
- Ruiz-Cisneros M.F., Ornelas-Paz J.D.J., Olivas-Orozco G.I., Acosta-Muñiz C.H., Sepúlveda-Ahumada D.R., Pérez-Corral D.A., et al., 2018. Effect of Trichoderma spp. and phytopathogenic fungi on plant growth and tomato fruit quality. Mex. J. Phytopathol. 36, 444-456.10.18781/R.MEX.FIT.1804-5
- Shoresh M., Harman G.E., 2008. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol. 147(4), 2147-2163.10.1104/pp.108.123810249261218562766
- Steiner A.A., 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15(2), 134-154.10.1007/BF01347224
- Thompson K.A., Marshall M.R., Sims C.A., Wei C.I., Sargent S.A., Scott J.W., 2000. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J. Food Sci. 65(5), 791-795.10.1111/j.1365-2621.2000.tb13588.x
- Tigist M., Workneh T.S., Woldetsadik K., 2013. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 50(3), 477-486.10.1007/s13197-011-0378-0360255024425942
- USDA, 1991. United States Standards for Grades of Fresh Tomatoes. Available from: www.ams.usda.gov/sites/default/files/media/Tomato_Standard%5B1%5D.pdf; cited on 21 Jun 2019.
- Valero D., Serrano M., 2010. Postharvest Biology and Technology for Preserving Fruit Quality. CRC Press, Boca Raton, FL, USA.10.1201/9781439802670
- White P.J., 2002. Recent advances in fruit development and ripening: an overview. J. Exp. Bot. 53(377), 1995-2000.10.1093/jxb/erf10512324524
- Winsor G.W., Davies J.N., Massey D.M., 1962. Composition of tomato fruit. III.– Juices from whole fruit and locules at different stages of ripeness. J. Sci. Food Agric. 13(2), 108-115.10.1002/jsfa.2740130209
- Wormit A., Usadel B., 2018. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 19(10), 1-19.10.3390/ijms19102878621351030248977