Have a personal or library account? Click to login
Application of ZnO-nanoparticles to manage Rhizopus soft rot of sweet potato and prolong shelf-life Cover

Application of ZnO-nanoparticles to manage Rhizopus soft rot of sweet potato and prolong shelf-life

Open Access
|Dec 2019

References

  1. Abdel-Hafez S.I., Abo-Elyousr K.A., Abdel-Rahim I.R., 2015. Leaf surface and endophytic fungi associated with onion leaves and their antagonistic activity against Alternaria porri. Czech Mycol. 67, 1-22.10.33585/cmy.67101
  2. Abobatta W.F., 2018. Nanotechnology application in agriculture. Acta Sci. Agric. 26, 99-102.
  3. Agrios G.N., 2001. Fitopatología. 2nd Edition. Limusa. Mexico D.F.
  4. Al-Naamani L., Dutta J., Dobretsov S., 2018. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of okra (Abelmoschus esculentus). Nanomaterials 8(7), 479.10.3390/nano8070479
  5. Andrews J.M., 2001. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemoth. 48(1), 5-16.10.1093/jac/48.suppl_1.5
  6. Anukwuorji C.A., Anuagasi C.L., Okigbo R.N., 2013. Occurrence and control of fungal pathogens of potato (Ipomoea batatas L. Lam) with plant extracts. Intern. J. Pharm. Technol. Res. 2(3), 273-289.
  7. Arciniegas-Grijalba P.A., Patiño-Portela M.C., Mosquera-Sánchez L.P., Guerrero-Vargas J.A., Rodríguez-Páez J.E., 2017. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 7(5), 225-241. ‏10.1007/s13204-017-0561-3
  8. Aydin S.B., Hanley L., 2010. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. Part B: Appl. Biomat. 94(1), 22-31.10.1002/jbm.b.31620
  9. Bauer A.W., Kirby W.M., Sherris J.C., Turck M., 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4), 493-496.10.1093/ajcp/45.4_ts.493
  10. Bonham M., O’Connor J.M., Alexander H.D., Coulter J., Walsh P.M., Mcanena L.B., et al., 2003. Zinc supplementation has no effect on circulating levels of peripheral blood leucocytes and lymphocyte subsets in healthy adult men. Brit. J. Nutr. 89(5), 695-703.10.1079/BJN2003826
  11. Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248-254.10.1016/0003-2697(76)90527-3
  12. Buzby J.C., Farah-Wells H., Hyman J., 2014. The estimated amount, value, and calories of postharvest food losses at the retail and consumer levels in the United States. USDA-ERS Economic Information Bulletin 121.10.2139/ssrn.2501659
  13. Clark C.A., Da Silva W.L., Arancibia R.A., Main J.L., Schultheis J.R., Van-Esbroeck Z.P., et al., 2013. Incidence of end rots and internal necrosis in sweet potato is affected by cultivar, curing, and ethephon defoliation. Hort. Technol. 23(6), 886-897.10.21273/HORTTECH.23.6.886
  14. Debeaufort F., Quezada-Gallo J.A., Voilley A., 1998. Edible films and coatings: tomorrows packaging: a review. Crit. Rev. Food Sci. Nut. 38, 299-313.10.1080/104086998912742199626488
  15. Du R.L., Chang J., Nis Y., Zhai W.Y., Wang J.Y., 2006. Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics. J. Biomat. Appl. 20(4), 341-360.10.1177/088532820605453516443621
  16. Edmuds B.A., Clark C.A., Villordon A.Q., Holmes G.J., 2015. Relationships of preharvest weather conditions and soil factors to susceptibility of sweetpotato to postharvest decay caused by Rhizopus stolonifer and Dickey adadantii. Plant Dis. 99(6), 848-857.10.1094/PDIS-11-14-1143-RE30699536
  17. Edmunds B.A., Holmes G.J., 2009. Evaluation of alternative decay control products for control of postharvest Rhizopus soft rot of sweet potatoes. Plant Health Progress, 1-10.10.1094/PHP-2009-0206-01-RS
  18. Emamifar A., Kadivar M., Shahedi M., Soleimanian-Zad S., 2010. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov. Food Sci. Emer. Technol. 11(4), 742-748.10.1016/j.ifset.2010.06.003
  19. Espitia P.J.P., Soares N.D.F.F., Dos Reis Coimbra J.S., De Andrade N.J., Cruz R.S., Medeiros E.A.A., 2012. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Biopr. Technol. 5(5), 1447-1464.10.1007/s11947-012-0797-6
  20. FAO [Food and Agriculture Organization], 2011. Global food losses and food waste. Study conducted for the International congress SAVE FOOD! At Interpack, Düsseldorf.
  21. Fu P., Xia Q., Hwang H-M., Ray P.C., Yu H., 2014. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22, 64-75.10.1016/j.jfda.2014.01.00524673904
  22. Galstyan V., Bhandari M.P., Sberveglieri V., Sberveglieri G., Comini E., 2018. Metal oxide nanostructures in food applications: Quality control and packaging. Chemosensors 6(2), 16.10.3390/chemosensors6020016
  23. Gunalan S., Sivaraj R., Rajendran V., 2012. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress Natural Sci.: Material Inter. 22(6), 693-700.10.1016/j.pnsc.2012.11.015
  24. He X., Hwang H.M., 2016. Nanotechnology in food science: Functionality, applicability, and safety assessment. J. Food Drug Anal. 24(4), 671-681.10.1016/j.jfda.2016.06.00128911604
  25. He X., Liu Y., Mustapha A., Lin M., 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res.166(3), 207-215.10.1016/j.micres.2010.03.00320630731
  26. Hernández-Lauzardo A.N., Bautista-Baños S., Velázquez-Del Valle M.G., Trejo-Espino J.L., 2006. Identification of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill., causal agent of Rhizopus rot disease of fruits and vegetables. Revis. Mex. de Fitopatol. 24(1), 65-69.
  27. Hertel T.W., 2015. The challenges of sustainably feeding a growing planet. Food Secur. 7, 185-198.10.1007/s12571-015-0440-2
  28. Holmes G.J., Stange R.R., 2002. Influence of wound type and storage duration on susceptibility of sweet potatoes to Rhizopus soft rot. Plant Dis. 86(4), 345-348.10.1094/PDIS.2002.86.4.345
  29. Hooper P.L., Visconti L., Garry P.J., Johnson G.E., 1980. Zinc lowers high-density lipoproteincholesterol levels. J. Am. Med. Assoc. 244,1960-1.10.1001/jama.244.17.1960
  30. Hussain A., Shrivastav A., Jain S.K., Baghel R.K., Rani S., Agrawal M.K., 2012. Cellulolytic enzymatic activity of soft rot filamentous fungi Paecilomyces variotii. Advan. Biores. 3(3), 10-17.
  31. Jamdagni P., Khatri P., Rana J.S., 2018a. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbortristis and their antifungal activity. J. King Saud. Univ-Sci. 30(2),168-175.10.1016/j.jksus.2016.10.002
  32. Jamdagni P., Rana J.S., Khatri P., Nehra K., 2018b. Comparative account of antifungal activity of green and chemically synthesized zinc oxide nanoparticles in combination with agricultural fungicides. Int. J. Nano Dimension 9(2), 198-208.
  33. Jin T., Sun D., Su J.Y., Zhang H., Sue H., 2009. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J. Food Sci. 74(1), 46-52.10.1111/j.1750-3841.2008.01013.x
  34. Jones N., Ray B., Ranjit K.T., Manna A.C., 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71-76.10.1111/j.1574-6968.2007.01012.x
  35. Kathiresan K., Manivannan S., 2006. α-amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afr. J. Biotechnol. 5, 829-832.
  36. Lakshmi S.J., Roopa Bai R.S., Sharanagouda H., Ramachandra C.T., Nadagouda S., Nidoni U., 2018. Effect of biosynthesized zinc oxide nanoparticles coating on quality parameters of fig (Ficus carica L.) fruit. J. Pharm. Phytochem. 7(3), 10-14.
  37. Lee B.W., Koo J.H., Lee T.S., Kim Y.H., Hwang J.S., 2013. Synthesis of ZnO nanoparticles via simple wet-chemical routes. Advan. Mater. Res. 699, 133-137.10.4028/www.scientific.net/AMR.699.133
  38. Lewis M.R., Kokan L., 1998. Zinc gluconate: acute ingestion. J. Toxicol. Clin. Toxicol. 36, 99-101.10.3109/15563659809162595
  39. Li P., Barth M.M., 1998. Impact of edible coatings on nutritional and physiological changes in lightly processed carrots. Postharv. Biol. Technol.14, 51-60.10.1016/S0925-5214(98)00020-9
  40. Li X., Li W., Jiang Y., Ding Y., Yun J., Tang Y., et al., 2011. Effect of nano ZnO coated active packaging on quality of fresh cut “Fuji” apple. Intern. J. Food Sci. Technol. 46(9), 1947-1955.10.1111/j.1365-2621.2011.02706.x
  41. Lin D., Zhao Y., 2007. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compreh. Revi. Food Sci. Food Saf. 6(3), 60-75.10.1111/j.1541-4337.2007.00018.x
  42. Mcclung J.P., Scrimgeour A.G., 2005. Zinc: an essential trace element with potential benefits to soldiers. Milit. Med. 170(12), 1048-1052.10.7205/MILMED.170.12.1048
  43. Meng X., Zhang M., Adhikari B., 2014. The effects of ultrasound treatment and nanozinc oxide coating on the physiological activities of fresh-cut kiwi fruit. Food Biopro. Technol. 7(1), 126-132.10.1007/s11947-013-1081-0
  44. Merzendorfer H., 2006. Insect chitin synthases: a review. J. Comp. Physiol. B 176, 1-15.10.1007/s00360-005-0005-316075270
  45. Miller G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt. Chemi. 31(3), 426-428.10.1021/ac60147a030
  46. Min S., Krochta J.M., 2005. Antimicrobial films and coatings for fresh fruit and vegetables. In: Improving the safety of fresh fruit and vegetables. W. Jongen (Ed.), CRC Press, New York, USA, 455-492.10.1533/9781845690243.3.454
  47. Nelson S.C., 2009. Rhizopus soft rot of sweet potato. University of Hawaii at Manoa, College of Tropical Agriculture and Human Resources, Cooperative Extension Service.
  48. Park J., Choi S., Moon H., Seo H., Kim J., Hong S-P., et al., 2017. Antimicrobial spray nanocoating of supramolecular Fe (III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits. Sci. Rep. 7, 6980.10.1038/s41598-017-07257-x553909828765556
  49. Ragaert P., Devlieghere F., Debevere J. 2007. Role of microbiological and physiological spoilage mechanisms during storage of minimally processed vegetables. Postharv. Biol. Technol. 44(3), 185-194.10.1016/j.postharvbio.2007.01.001
  50. Reynolds T.W., Waddington S.R., Anderson C.L., Chew A., True Z., Cullen A., 2015. Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. Food Secur. 7, 795-822.10.1007/s12571-015-0478-1
  51. Romero M., CantóN E., PemáN J., Gobernado M., 2005. Antifúngicos inhibidores de la síntesis del glucano. Rev. Esp. Quimioter. 18, 281-299.
  52. Sardella D., Gatt R., Valdramidis V.P., 2018. Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology 9(1), 43-48.10.1080/21501203.2017.1369187605906930123660
  53. Sharma R.M., Singh R.R., 2000. Harvesting, postharvest handling and physiology of fruits and vegetables. In: Postharvest technology of fruits and vegetables Vol. 1. Handling, processing, fermentation and waste management. L.R.Verma and V.K. Joshi (Eds), Indus Publishing Co., Tagore Garden, New Delhi, India, 94-147.
  54. Sogvar O.B., Saba M.K., Emamifar A., Hallaj R., 2016. Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innov. Food Sci. Emer. Technol. 35, 168-176.10.1016/j.ifset.2016.05.005
  55. Solomons N.W., 1998. Mild human zinc deficiency produces an imbalance between cell-mediated and humoral immunity. Nutr. Rev. 56, 27-8.10.1111/j.1753-4887.1998.tb01656.x9481116
  56. Tang B., Pan H., Tang W., Zhang Q., Ding L., Zhang F., 2012. Fermentation and purification of cellulase from a novel strain Rhizopus stolonifer var. reflexus TP-02. Biom. Bioen. 36, 366-372.10.1016/j.biombioe.2011.11.003
  57. Thirumavalavan M., Huang K.L., Lee J.F., 2013. Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials 6(9), 4198-4212.10.3390/ma6094198545264728788326
  58. Vogler B.K., Ernst E., 1999. Aloe vera: A systematic review of its clinical effectiveness. Brit. J. Gen. Pract. 49(447), 823-828.
  59. West P.C., Gerber J.S., Engstrom P.M., Mueller N.D., Brauman K.A., Carlson K.M., et al., 2014. Leverage points for improving food security and the environment. Science 345, 325-327.10.1126/science.124606725035492
  60. Wu H., Yin J-J., Wamer W.G., Zeng M., Lo Y.M., 2014. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J. Food Drug Anal. 22, 86-94.10.1016/j.jfda.2014.01.00724673906
  61. Xie Y., He Y., Irwin P.L., Jin T., Shi X., 2011. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7), 2325-2331.10.1128/AEM.02149-10306744121296935
  62. Yehia R.S., Ahmed O.F., 2013. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr. J. Microb. Res., 7(19): 1917-1923.10.5897/AJMR2013.5668
  63. Zhao L., Liu L., Ma Y., 2009. Preservation of apricot by chitosan nano-ZnO film. Food Res. Develop. 30(2), 126-128.
  64. Zucolotto V., Dura´N N., Guterres S., Alves L., 2013. Nanotoxicology: materials, methodologies, and assessments. Springer Science & Business Media, New York, USA.
DOI: https://doi.org/10.2478/fhort-2019-0025 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 319 - 329
Submitted on: Mar 14, 2019
Accepted on: Aug 1, 2019
Published on: Dec 26, 2019
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Nivien A. Nafady, Saad A.M. Alamri, Elhagag Ahmed Hassan, Mohamed Hashem, Yasser S. Mostafa, Kamal A.M. Abo-Elyousr, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.