Have a personal or library account? Click to login
Selenium-induced improvements in the ornamental value and salt stress resistance of Plectranthus scutellarioides (L.) R. Br. Cover

Selenium-induced improvements in the ornamental value and salt stress resistance of Plectranthus scutellarioides (L.) R. Br.

Open Access
|Jun 2019

References

  1. Banerjee A., Roychoudhury A., 2018. Role of beneficial trace elements in salt stress tolerance of plants. In: Plant Nutrients and Abiotic Stress Tolerance. M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar and B. Hawrylak-Nowak (Eds), Springer, Singapore, 377-390.10.1007/978-981-10-9044-8_16
  2. Bates L., Waldren R., Teare J., 1973. Rapid determination of free proline for water stress studies. Plant Soil 39, 205-207.10.1007/BF00018060
  3. Bosnic P., Bosnic D., Jasnic J., Nikolic M., 2018. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ. Exp. Bot. 155, 681-687.10.1016/j.envexpbot.2018.08.018
  4. Cassaniti C., Romano D., Flowers T.J., 2012. The response of ornamental plants to saline irrigation water. In: Irrigation – Water Management, Pollution and Alternative Strategies. I. Garcia-Garizabal (Ed.), IntechOpen, London, UK, 131-158.10.5772/31787
  5. Cunningham M.A., Snyder E., Yonkin D., Ross M., Elsen T., 2008. Accumulation of deicing salts in soils in an urban environment. Urban Ecosyst. 11, 1-31.10.1007/s11252-007-0031-x
  6. Diao M., Ma L., Wang J., Cui J., Fu A., Liu H., 2014. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defence system. J. Plant Growth Regul. 33, 671-682.10.1007/s00344-014-9416-2
  7. Elkhatib H.A., Elkhatib E.A., Allah A.M.K., El-Sharkawy A.M., 2004. Yield response of salt stressed potato to potassium fer tilization: a preliminary mathematical model. J. Plant Nutr. 27, 111-122.10.1081/PLN-120027550
  8. Eryilmaz F., 2006. The relationships between salt stress and anthocyanin content in higher plants. Biotechnol. Biotec. Eq. 20, 47-52.10.1080/13102818.2006.10817303
  9. Hawrylak-Nowak B., 2008. Changes in anthocyanin content as indicator of maize sensitivity to selenium. J. Plant Nutr. 31, 1232-1242.10.1080/01904160802134962
  10. Hawrylak-Nowak B., 2009. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res. 132, 259-269.10.1007/s12011-009-8402-119434374
  11. Hawrylak-Nowak B., 2015. Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biol. Cracov., Ser. Bot. 57, 49-54.10.1515/abcsb-2015-0023
  12. Hawrylak-Nowak B., Hasanuzzaman M., Matraszek -Gawron R., 2018. Mechanisms of selenium-induced enhancement of abiotic stress tolerance in plants. In: Plant Nutrients and Abiotic Stress Tolerance. M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar and B. Hawrylak-Nowak (Eds), Springer, Singapore, 269-295.10.1007/978-981-10-9044-8_12
  13. Ibrahim K.M., Collins J.C., Collin H.A., 1992. Characterization of progeny of Coleus blumei following an in vitro selection for salt tolerance. Plant Cell Tissue Organ Cult. 28, 139-145.10.1007/BF00055508
  14. Jiang C., Zu C., Lu D., Zheng Q., Shen J., Wang H., et al., (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci. Rep. 7, 42039.10.1038/srep42039529458628169318
  15. Khan M.I.R., Nazir F., Asgher M., Per T.S., Khan N.A., 2015. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 173, 9-18.10.1016/j.jplph.2014.09.01125462073
  16. Kong L., Wang M., Bi D., 2005. Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul. 45, 155-163.10.1007/s10725-005-1893-7
  17. Kovinich N., Kayanja G., Chanoca A., Otegui M.S., Grotewold E., 2015. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav. 10, 7.10.1080/15592324.2015.1027850462262326179363
  18. Leyva R., Sánchez-Rodríguez E., Ríos J.J., Rubio-Wilhelmi M.M., Romero L., Ruiz J.M., et al., 2011. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Sci. 181, 195-202.10.1016/j.plantsci.2011.05.00721683885
  19. Lichtenthaler H.K., Wellburn A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603, 591-592.10.1042/bst0110591
  20. Matraszek R., Hawrylak-Nowak B., Chwil M., 2015. Protein hydrolysate as a component of salinized soil in the cultivation of Ageratum houstonianum Mill. (Asteraceae). Acta Agrobot. 68, 247-253.10.5586/aa.2015.028
  21. Munns R., Tester M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651 681.10.1146/annurev.arplant.59.032607.09291118444910
  22. Murchie E.H., Lawson T., 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983-3998.10.1093/jxb/ert20823913954
  23. Negrão S., Schmöckel S.M., Tester M., 2017. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119, 1-11.10.1093/aob/mcw191521837227707746
  24. Ramoliya P.J., Patel H.M., Pandey A.N., 2004. Effect of salinisation of soil on growth and macro- and micro-nutrient accumulation in seedlings of Acacia catechu (Mimosaceae). Ann. Appl. Biol. 144, 321-332.10.1111/j.1744-7348.2004.tb00347.x
  25. Santos C.C., 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 103, 93-99.10.1016/j.scienta.2004.04.009
  26. Shahzad M., Zörb C., Geilfus C.M., Mühling K.H., 2013. Apoplastic Na+ in Vicia faba leaves rises after short-term salt stress and is remedied by silicon. J. Agron. Crop Sci. 199, 161-170.10.1111/jac.12003
  27. Stirbet A., Lazár D., Kromdijk J., Govindjee, 2018. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56, 86-104.10.1007/s11099-018-0770-3
  28. Sudhir P., Murthy S.D.S., 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42, 481-486.10.1007/S11099-005-0001-6
  29. Wahid A., Ghazanfar A., 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol. 163, 723-730.10.1016/j.jplph.2005.07.00716616583
  30. Wang Y., Li K., Li X., 2009. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 166, 1637-1645.10.1016/j.jplph.2009.04.00919457582
  31. White P.J., 2018. Selenium metabolism in plants. Biochim. Biophys. Acta Gen. Subj. 1862, 2333-2342.10.1016/j.bbagen.2018.05.006
  32. Wrochna M., Gawroński S.W., 2004. Ocena przydatności roślin ozdobnych z rodziny komosowatych i szarłatowatych do uprawy na stanowiskach zasolonych [Evaluation of the usefulness of ornamental plants from the family Chenopodiaceae and Amaranthaceae for cultivation in saline areas]. Roczn. AR w Poznaniu, CCCLVI, Ogrodnictwo 37, 233-238 [in Polish].
  33. Zhu J.K., 2001. Plant salt tolerance. Trends Plant Sci. 6, 66-71.10.1016/S1360-1385(00)01838-0
DOI: https://doi.org/10.2478/fhort-2019-0016 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 213 - 221
Submitted on: Dec 20, 2018
|
Accepted on: Apr 4, 2019
|
Published on: Jun 30, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Barbara Hawrylak-Nowak, Katarzyna Rubinowska, Jolanta Molas, Weronika Woch, Renata Matraszek-Gawron, Agnieszka Szczurowska, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.