Have a personal or library account? Click to login
Developmental and biochemical analyses of in vitro drought stress response in ornamental European Bluestar (Amsonia orientalis Decne.) Cover

Developmental and biochemical analyses of in vitro drought stress response in ornamental European Bluestar (Amsonia orientalis Decne.)

Open Access
|Dec 2018

References

  1. Acemi A., Özen F., Kiran R., 2012. Development of an efficient callus production protocol for Amsonia orientalis: A critically endangered medicinal plant. Eurasia J. Biosci. 6, 105-112.10.5053/ejobios.2012.6.0.13
  2. Acemi A., Özen F., Kiran R., 2013. In vitro propagation of Amsonia orientalis Decne. from nodal segments of adult plants. Propag. Ornam. Plants 13(1), 25-32.
  3. Acemi A., Türker-Kaya S., Özen F., 2016. FT-IR spectroscopy based evaluation of changes in primary metabolites of Amsonia orientalis after in vitro 6-benzylaminopurine treatment. Not. Bot. Horti. Agrobot. 44(1), 209-214.10.15835/nbha44110194
  4. Acemi A., Duruksu G., Özen F., 2017a. Cytostatic effects of methanolic extracts of Amsonia orientalis Decne. on MCF-7 and DU145 cancer cell lines. Not. Bot. Horti. Agrobot. 45(1), 36-42.10.15835/nbha45110576
  5. Acemi A., Duman Y., Karakuş Y.Y., Kömpe Y.Ö., Özen F., 2017b. Analysis of plant growth and biochemical parameters in Amsonia orientalis after in vitro salt stress. Hortic. Environ. Biotechnol. 58(3), 231-239.10.1007/s13580-017-0215-0
  6. Aebi H., 1974. Methods of enzymatic analysis. In: Catalase. Bergmeyer H.U. (Ed.), Academic Press, New York, USA, 673-675.10.1016/B978-0-12-091302-2.50032-3
  7. Alam M., Hasanuzzaman M., Nahar K., Fujita M., 2013. Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. Aust. J. Crop Sci. 7(7), 1053-1063.
  8. Ammar M.H., Anwar F., El-Harty E.H., Migdad H.M., Abdel-Khalik S.M., Al-Faifi S.A., etal., 2014. Physiological and yield responses of Faba bean (Vicia faba L.) to drought stress in managed and open field environments. J. Agron. Crop Sci. 201(4), 280-287.10.1111/jac.12112
  9. Bates L.S., Waldren R.P., Teare I.D., 1973. Rapid determination of free proline for water stress studies. Plant Soil 39, 205-207.10.1007/BF00018060
  10. Behnamnia M., Kalantari K.M., Ziaie J., 2009. The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turk J. Bot. 33, 417-428.10.3906/bot-0806-12
  11. Bern Convention, 1979. Convention on the conservation of European wildlife and natural habitats. https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=0900001680304354. Accessed 9 November 2017.
  12. Bradford M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254.10.1016/0003-2697(76)90527-3
  13. Catola S., Marino G., Emiliani G., Huseynova T., Musayev Y., Akparov Z., Maserti B.E., 2016. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta 243(2), 441-449.10.1007/s00425-015-2414-126452697
  14. Cruz De Carvalho M.H, 2008. Drought stress and reactive oxygen species. Plant Signal. Behav. 3(3), 156-165.10.4161/psb.3.3.5536263410919513210
  15. Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A., 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93-101.10.1093/jxb/32.1.93
  16. Dong X., Bi H., Wu G., Ai X., 2013. Drought-induced chilling tolerance in cucumber involves membrane stabilisation improved by antioxidant system. Int. J. Plant Prod. 7(1), 67-80.
  17. Doupis G., Chartzoulakis K., Beis A., Patakas A., 2011. Allometric and biochemical responses of grapevines subjected to drought and enhanced ultraviolet-B radiation. Aust. J. Grape Wine Res. 17, 36-42.10.1111/j.1755-0238.2010.00114.x
  18. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A., 2009. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 29, 185-212.10.1051/agro:2008021
  19. Foyer C.H., Noctor G., 2000. Oxygen processing in photosynthesis: regulation and signaling. New Phytol. 146, 350-388.10.1046/j.1469-8137.2000.00667.x
  20. Gong M., Chen B., Li Z., Guo L., 2001. Heat-shockinduced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J. Plant Physiol. 158, 1125-1130.10.1078/0176-1617-00327
  21. Guo Y.-Y., Yu H.-Y., Kong D.-S., Yan F., Zhang Y.-J., 2016. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica 54(4), 524-531.10.1007/s11099-016-0206-x
  22. rkanli C.T., Özkoç İ., Aydin E.B., Acemi A., Özen F., 2014. Genetic diversity of Amsonia orientalis. Biologia. 69, 742-749.10.2478/s11756-014-0368-6
  23. Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S.P., 2012. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17, 172-179.10.1016/j.tplants.2011.12.00522236698
  24. Hameed A., Goher M., Iqbal N., 2013. Drought induced programmed cell death and associated changes in antioxidants, proteases, and lipid peroxidation in wheat leaves. Biol. Plantarum 57(2), 370-374.10.1007/s10535-012-0286-9
  25. Ivanchenko M.G., Den Os D., Monhausen G.B., Dubrovsky J.G., Bednárová A., Krishnan N., 2013. Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann. Bot. 112, 1107-1116.10.1093/aob/mct181378324523965615
  26. Kang G.Z., Li G.Z., Liu G.Q., Xu W., Peng X.Q., Wang C.Y., etal., 2013. Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol. Plantarum 57(4), 718-724.10.1007/s10535-013-0335-z
  27. Kar M., Mishra D., 1976. Catalase, peroxidase, polyphenol oxidase activities during rice leaf senescence. Plant Physiol. 57, 315-319.10.1104/pp.57.2.315
  28. Krasensky J., Jonak C., 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63(4), 1593-1608.10.1093/jxb/err460
  29. Kubiś J., Zając M.R., 2008. Drought and excess UV-B irradiation differentially alter the antioxidant system in cucumber leaves. Acta Biol. Cracov. Bot. 50(2), 35-41.
  30. Li Z., Peng Y., Ma X., 2013. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (Trifolium repens L.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiol. Plant. 35, 213-222.10.1007/s11738-012-1066-z
  31. Liao W-B., Huang G-B., Yu J-H., Zhang M-J., 2012. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol. Biochem. 58, 6-15.10.1016/j.plaphy.2012.06.012
  32. Lichtenthaler H., 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol. 148, 350-382.10.1016/0076-6879(87)48036-1
  33. Ma H., Xu X., Feng L., 2014. Responses of antioxidant defenses and membrane damage to drought stress in fruit bodies of Auricularia auricula-judae. World J. Microbiol. Biotechnol. 30, 119-124.10.1007/s11274-013-1416-z23861039
  34. Mohammadkhani N., Heidari R., 2008. Effects of drought stress on soluble proteins in two maize varieties. Turk J. Biol. 32, 23-30.10.2478/v10020-008-0029-8
  35. Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473-497.10.1111/j.1399-3054.1962.tb08052.x
  36. Neto A.D.A., Prisco J.T., Enéas-Filho J., Abreu C.E.B., Gomes-Filho E., 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56, 87-94.10.1016/j.envexpbot.2005.01.008
  37. Petrov V., Hille J., Mueller-Roeber B., Gechev T.S., 2015. ROS-mediated abiotic stress-induced programmed cell death in plants. Front. Plant Sci. 6, 69.10.3389/fpls.2015.00069433230125741354
  38. Proietti P., Nasini L., Buono D.D., D’Amato R., Tedeschini E., Businelli D., 2013. Selenium protects olive (Olea europaea L.) from drought stress. Sci. Hortic. 164, 165-171.10.1016/j.scienta.2013.09.034
  39. Roussos P.A., 2013. Growth and biochemical responses of jojoba (Simmondsia chinensis (Link) Schneid) explants cultured under mannitol-simulated drought stress in vitro. Plant Biosyst. 147(2), 272-284.10.1080/11263504.2013.768558
  40. Stadtman E.R., Levine R.L., 2000. Protein oxidation. Ann. NY. Acad. Sci. 899, 191-208.10.1111/j.1749-6632.2000.tb06187.x10863540
  41. Tingey D.T., Stockwell C., 1977. Semipermeable membrane system for subjecting plants to water-stress. Plant Physiol. 60, 58-62.10.1104/pp.60.1.5854254716660044
  42. Willekens H., Chamnongpol S., Davey M., Schraunder M., Langebartels C., Van Montagu M., Inzé D., Van Camp W., 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16, 4806-4816.10.1093/emboj/16.16.480611701169305623
  43. Wu G.Q., Zhang L.N., Wang Y.Y., 2012. Response of growth and antioxidant enzymes to osmotic stress in two different wheat (Triticum aestivum L.) cultivars seedlings. Plant Soil Environ. 58(12), 534-539.10.17221/373/2012-PSE
  44. Zhu J.K., 2002. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 53, 247-273.10.1146/annurev.arplant.53.091401.143329312834812221975
DOI: https://doi.org/10.2478/fhort-2018-0031 | Journal eISSN: 2083-5965 | Journal ISSN: 0867-1761
Language: English
Page range: 357 - 366
Submitted on: Nov 28, 2017
Accepted on: Feb 21, 2018
Published on: Dec 14, 2018
Published by: Polish Society for Horticultural Sciences (PSHS)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Arda Acemi, Yonca Avcı Duman, Yonca Yuzugullu Karakus, Fazıl Özen, published by Polish Society for Horticultural Sciences (PSHS)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.