Have a personal or library account? Click to login
Cherry spruce rust in the Wigry National Park and Suwałki Forest District: cone infestation and its implications Cover

Cherry spruce rust in the Wigry National Park and Suwałki Forest District: cone infestation and its implications

Open Access
|Mar 2025

References

  1. Almqvist, C., Rosenberg, O. 2016. Control of cherry spruce rust infection (Thekpsora areolata) by use of fungicides – Trials performed in 2014 and 2015. Arbetsrapport från Skogforsk, 897, 10.
  2. Banach, J., Skrzyszewska, K., Skrzyszewski, J. 2017. Reforestation in Poland: history, current practice and future perspectives. Reforesta, 3, 185–195.
  3. Beenken, L., Zoller, S., Berndt, R. 2012. Rust fungi on Annonaceae II: the genus Dasyspora Berk. & MA Curtis. Mycologia, 104 (3), 659–681.
  4. Behnke-Borowczyk J. et al. 2023. Variability of functional groups of rhizosphere fungi of Norway spruce (Picea abies (L.) H.Karst.) in the boreal range: The Wigry National Park, Poland. International Journal of Molecular Sciences, 24 (16), 12628.
  5. Bijak, S., Czajkowski, M., Ludwisiak, Ł. 2014. Occurrence of black cherry (Prunus serotina Ehrh.) in the State Forests in Poland. Forest Research Papers, 75, 359–365.
  6. Bosela, M., Kulla, L., Marušák, R. 2011. Detrending ability of several regression equations in tree-ring research: a case study based on tree-ring data of Norway spruce (Picea abies [L.]). Journal of Forensic Sciences, 57, 491–499.
  7. CABI Compendium. 2022. Thekopsora areolata (cherry spruce rust) [on-line]. CABI International. Available at https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.45892 (access on 27 December 2023).
  8. Capador, H., Samils, B., Kaitera, J., Olson, Å. 2020. Genetic evidence for sexual reproduction and multiple infections of Norway spruce cones by the rust fungus Thekopsora areolata. Ecology and Evolution, 10, 7389–7403.
  9. Chlebicki, A. 2018. Workowce z klas Dothideomycetes, Leotiomycetes i Sordariomycetes i ich stadia anamorficzne w zbiorowiskach roślinnych Babiogórskiego Parku Narodowego. In: Grzyby Babiej Góry. Monografie Babiogórskie (eds. W. Mułenko, J. Holeksa). Babiogórski Park Narodowy, Wrocław-Zawoja, 85–111.
  10. Covo, S. 2020. Genomic instability in fungal plant pathogens. Genes, 11 (4), 421.
  11. Dale, V.H. 2001. Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience, 51 (9), 723–734.
  12. Dering, M., Lewandowski, A. 2009. Finding the meeting zone: Where have the northern and southern ranges of Norway spruce overlapped? Forest Ecology and Management, 259, 229–235.
  13. Farr, D.F., Rossman, A.Y. 2020. Fungal Databases, U.S. National Fungus Collections. ARS, USDA. Available at https://nt.ars-grin.gov/fungaldatabases/(access on 27 December 2023).
  14. Frelich, L.E., Reich, P.B. 1999. Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems, 2 (2), 151–166.
  15. Grodzki, W. 2004. Zagrożenie górskich drzewostanów świerkowych w zachodniej części Beskidów ze strony szkodników owadzich. Leśne Prace Badawcze, 2, 35–47.
  16. Jevšenak, J. et al. 2021. Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. International Journal of Biometeorology, 65, 311–324.
  17. Jurek, E., Olszowska, G., Olszowski, J. 1983. Zamieranie drzewostanów świerkowych w rejonie Gór Izerskich. Sylwan, 127 (9/10), 13–20.
  18. Kaitera, J. 2013. Thekopsora and Chrysomyxa cone rusts damage Norway spruce cones after a good cone crop in Finland. Scandinavian Journal of Forest Research, 28, 217–222.
  19. Kaitera, J., Aarnio, L., Karhu, J., Ylioja, T. 2021. Temporal sporulation of Thekopsora areolata and Chrysomyxa spp. in Finnish Norway spruce seed orchards, Forest Ecology and Management, 499, 119557.
  20. Kaitera, J., Karhu, J. 2021. Temperature range for germination of Thekopsora areolata aeciospores from Finnish Norway spruce seed orchards. Silva Fennica, 55 (1), id 10422, 9.
  21. Kaitera, J., Kauppila, T., Hantula, J. 2017. New Picea hosts for Chrysomyxa ledi and Thekopsora areolata. Forest Pathology, 47, e12365.
  22. Kaitera, J., Kauppila, T., Hantula, J. 2019. Pathogenicity of Thekopsora areolata from seed orchards in Finland on Prunus spp. and Picea abies. Forest Pathology, 49, e12567.
  23. Kaitera, J., Kauppila, T., Hantula, J. 2021. Assessment of the potential of Norway-spruce-seed-orchard associated plants to serve as alternate hosts of Thekopsora areolata. Silva Fennica, 55 (2), article id 10446.
  24. Kaitera, J., Tillman-Sutela, E. 2014. Germination capacity of Thekopsora areolata aeciospores and the effect of cone rusts on seeds of Picea abies. Scandinavian Journal of Forest Research, 29, 22–26.
  25. Kantorowicz, W. 2000. Half a century of seed years in major tree species of Poland. Silvae Genetica, 49 (6), 245–249.
  26. Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.
  27. Latałowa, M., van der Knaap, W.O. 2006. Late quaternary expansion of Norway spruce Picea abies (L.) Karst in Europe according to pollen data. Quaternary Science Reviews, 25, 2780–2805.
  28. Lundströmer, J., Karlsson, B., Berlin, M. 2020. Strategies for deployment of reproductive material under supply limitations – a case study of Norway spruce seed sources in Sweden. Scandinavian Journal of Forest Research, 35, 495–505.
  29. Majewski, T. 1971. Grzyby pasożytnicze Białowieskiego Parku Narodowego na tle mikoflory Polski (Peronosporales, Erysiphaceae, Uredinales, Ustilaginales). Acta Mycologica, 7, 299–388.
  30. Mazurski, K.R. 1986. The destruction of forests in the Polish Sudetes Mountains by industrial emissions. Forest Ecology and Management, 17 (4), 303–315.
  31. Miścicki, S. 2016. Changes in the stands of the Białowieża National Park from 2000 to 2015. Leśne Prace Badawcze, 4, 371–379.
  32. National Register of Forest Basic Material. 2024. SEMEN. Forest Seed Office. Available at https://bnl.gov.pl/semen,106.asp. Poland (access on 27 May 2024).
  33. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.
  34. Pfunder, M., Schürch, S. 2001. Sequence variation and geographic distribution of pseudoflower-forming rust fungi (Uromyces pisi s. lat.) on Euphorbia cyparissias. Mycological Research, 105 (1), 57–66.
  35. Schurman, J.S. et al. 2018. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Global Change Biology, 24 (5), 2169–2181.
  36. Sierota, Z., Grodzki, W., Szczepkowski, A. 2019. Abiotic and biotic disturbances affecting forest health in Poland over the past 30 years: impacts of climate and forest management. Forests, 10, 75.
  37. Skrzecz, I., Perlińska, A. 2018. Current problems and tasks of forest protection in Poland. Folia Forestalia Polonica, Series A – Foresty, 60 (3), 161–172.
  38. Smith, I.M., Dunez, J., Lelliott, R.A., Phillips, D.H., Archer, S.A. 2009. European handbook of plant diseases. Blackwell Scientific Publications, Oxford
  39. Sutherland, J.R., Hopkinson, S.J., Farris, S.H. 1984. Inland spruce cone rust, Chrysomyxa pirolata, in Pyrola asarifolia and cones of Picea glauca, and morphology of the spore stages. Canadian Journal of Botany, 62 (11), 2441–2447.
  40. Talgø, V., Stensvand, A., Pettersson, M., Fløistad, I.S. 2020. Management of diseases in Norwegian Christmas tree plantations. Scandinavian Journal of Forest Research, 35, 433–444.
  41. Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transitiontransversion and G+ C-content biases. Molecular Biology and Evolution, 9 (4), 678–687.
  42. Wesołowski, T., Rowiński, P., Maziarz, M. 2015. Interannual variation in tree seed production in a primeval temperature forest: does masting prevail? European Journal of Forest Research, 134, 99–112.
  43. White, T.J., Bruns, T., Lee, S.J.W.T., Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In.: PCR protocols: a guide to methods and applications (eds. M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White). Academic Press, San Diego, 315–322.
  44. Zajączkowski, G. et al. 2023. Raport o stanie lasów w Polsce. Centrum Informacyjne Lasów Państwowych, Warszawa, Polska, 15–17.
  45. Załęski, A. 2000. Zasady i metodyka oceny nasion w Lasach Państwowych. Centrum Informacyjne Lasów Państwowych, Warszawa, Polska.
  46. Zeppenfeld, T. et al. 2015. Response of mountain Picea abies forests to stand-replacing bark beetle outbreaks: neighbourhood effects lead to selfreplacement. Journal of Applied Ecology, 52, 1402–1411.
  47. Zhang, K., Kaitera, J., Samils, B., Olson, Å. 2022. Temporal and spatial dispersal of Thekopsora areolata basidiospores, aeciospores, and urediniospores. Plant Pathology, 71, 668–683.
  48. Ziller, W.G. 1974. The tree rusts of western Canada. Canadian Forestry Service, Dept. Environment, Victoria BC, Canada.
DOI: https://doi.org/10.2478/ffp-2025-0002 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 12 - 22
Submitted on: Oct 8, 2024
Accepted on: Nov 5, 2024
Published on: Mar 7, 2025
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marlena Baranowska, Anna Baturo-Cieśniewska, Maria Hauke-Kowalska, Adrian Łukowski, Robert Korzeniewicz, Marcin Zadworny, Wojciech Kowalkowski, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.