Have a personal or library account? Click to login
Automatic Airborne Laser Scanning Data Quality Control Procedure for Environmental Studies Cover

Automatic Airborne Laser Scanning Data Quality Control Procedure for Environmental Studies

Open Access
|Dec 2020

References

  1. Ahokas, E., Kaartinen, H., Hyyppä, J. 2004. A quality assessment of repeated airborne laser scanner observations. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35, 237-242.
  2. Alharthy, A., Bethel, J., Mikhail, E. M. 2004. Analysis and accuracy assessment of airborne laserscanning system. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35, 144-149.
  3. Antonarakis, A.S., Richards, K.S., Brasington, J. 2008. Object-based land cover classification using airborne LiDAR. Remote Sensing of Environment, 112 (6), 2988-2998. DOI: 10.1016/j.rse.2008.02.00410.1016/j.rse.2008.02.004
  4. Baltsavias, E.P. 1999. Airborne laser scanning: basic relations and formulas. ISPRS Journal of photogrammetry and remote sensing, 54 (2), 199-214. DOI: 10.1016/S0924-2716(99)00015-510.1016/S0924-2716(99)00015-5
  5. Behan, A. 2000. On the matching accuracy of rasterised scanning laser altimeter data. International Archives of Photogrammetry and Remote Sensing, 33 (B2), 75-80.
  6. Bowen, Z.H., Waltermire, R.G. 2002. Evaluation of light detection and ranging (LIDAR) for measuring river corridor topography. JAWRA Journal of the American Water Resources Association, 38 (1), 33-41.
  7. Chase, A.F. et al. 2011. Airborne LiDAR, archaeology, and the ancient Maya landscape at Caracol, Belize. Journal of Archaeological Science, 38 (2), 387-398. DOI: 10.1016/j.jas.2010.09.01810.1016/j.jas.2010.09.018
  8. Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37 (1), 35-46. DOI: 10.1016/0034-4257(91)90048-b10.1016/0034-4257(91)90048-B
  9. Congalton, R.G., Green, K. 2008. Assessing the accuracy of remotely sensed data: principles and practices. CRC press.10.1201/9781420055139
  10. County, K. 2003. LiDAR digital ground model point density, KGIS Center, Seattle, WA. Available at http://www5.kingcounty.gov/sdc/raster/elevation/LiDAR_Digital_Ground_Model_Point_Density.html/
  11. Dewberry, 2014. LiDAR Quality Assurance for Oahu LiDAR Produced for National Oceanic and Atmospheric Administration. Available at https://coast.noaa.gov/htdata/lidar1_z/geoid12a/data/3655/supplemental/hi2013_noaa_oahu_lidarreport_m3655.pdf
  12. Filin, S. 2003. Analysis and implementation of a laser strip adjustment model. International Archives of Photogrammetry and Remote Sensing, 65–70.
  13. Fischler, M.A., Bolles R.C. 1981. Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Communications of the ACM, 24 (6), 381-395.
  14. Groundpoint Technologies. 2010. Accuracy assessment and quality control report for the Milwaukee, WI Project Area. Available at http://www.county.milwaukee.gov/ImageLibrary/User/bshaw/LiDARQAQC_MilwaukeeWI_final_01.pdf
  15. Glennie, C. 2007. Rigorous 3D error analysis of kinematic scanning LIDAR systems. Journal of Applied Geodesy, 1 (3), 147-157.
  16. Gruen, A. 1985. Adaptive least squares correlation: a powerful image matching technique. South African Journal of Photogrammetry, Remote Sensing and Cartography, 14 (3), 175-187.
  17. Guo, B., Huang, X., Zhang, F., Sohn, G., 2015. Classification of airborne laser scanning data using JointBoost. ISPRS Journal of Photogrammetry and Remote Sensing, 100, 71-83. DOI: 10.1016/j.isprsjprs.2014.03.00410.1016/j.isprsjprs.2014.03.004
  18. Haala, N., Kada, M. 2010. An update on automatic 3D building reconstruction. ISPRS Journal of Photo-grammetry and Remote Sensing, 65 (6), 570-580. DOI: 10.1016/j.isprsjprs.2010.09.00610.1016/j.isprsjprs.2010.09.006
  19. Habib, A., Bang, K.I., Kersting, A.P., Chow, J. 2010. Alternative methodologies for LiDAR system calibration. Remote Sensing, 2 (3), 874-907. DOI: 10.3390/rs203087410.3390/rs2030874
  20. Habib, A., Bang, K.I., Kersting, A.P., Lee, D.C. 2009. Error budget of LiDAR systems and quality control of the derived data. Photogrammetric Engineering and Remote Sensing, 75 (9), 1093-1108. DOI: 10.14358/PERS.75.9.109310.14358/PERS.75.9.1093
  21. Habib, A.F., Kersting, A.P., Ruifang, Z., Al-Durgham, M., Kim, C., Lee, D.C. 2008. LiDAR strip adjustment using conjugate linear features in overlapping strips. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 385-390.
  22. Habib, A.F., Rens, J.V. 2007. Quality assurance and quality control of Lidar systems and derived data. In: Advanced Lidar Workshop, University of Northern Iowa.10.1201/9781420051438.ch9
  23. Heidemann, H.K. 2014. Lidar base specification version 1.0: US Geological survey techniques and methods. Book, 11, 63.
  24. Kim, H.B., Sohn, G. 2010. 3D classification of power-line scene from airborne laser scanning data using random forests. International Archives of Photo-grammetry and Remote Sensing, 38, 126-132.
  25. Lari, Z., Habib, A. 2012. Alternative methodologies for the estimation of local point density index: Moving towards adaptive LiDAR data processing. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, 127-132.
  26. Latypov, D. 2002. Estimating relative lidar accuracy information from overlapping flight lines. ISPRS Journal of Photogrammetry and Remote Sensing, 56 (4), 236-245. DOI: 10.1016/S0924-2716(02)00047-310.1016/S0924-2716(02)00047-3
  27. Liu, X. 2011. Accuracy assessment of LiDAR elevation data using survey marks. Survey Review, 43 (319), 80-93.
  28. Liu, Z.S., Liu, B.Y., Wu, S.H., Li, Z.G., Wang, Z.J. 2008. High spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements. Optics letters, 33 (13), 1485-1487.
  29. Luethy, J., Ingensand, H. 2004. How to evaluate the quality of airborne laser scanning data. Proceedings of NATSCAN-Conference on Laser-Scanners for Forest- and Landscape Assessment, Freiburg, Germany, October 3-6, 2004. International Archives of Photogrammetry and Remote Sensing, 36 (8/W2), 313-317.
  30. Maas, H.G. 2003. Planimetric and height accuracy of airborne laserscanner data: User requirements and system performance. Proceedings of Photogram-metric Week, Vol. 49, 117-125.
  31. Maas, H.G. 2002. Methods for measuring height and planimetry discrepancies in airborne laserscanner data. Photogrammetric Engineering and Remote Sensing, 68 (9), 933–940.
  32. Maltamo, M., Næsset, E., Vauhkonen, J. 2014. Forestry applications of airborne laser scanning. Concepts and case studies. Managing for Ecosystems, 27, 2014.
  33. Matikainen, L., Hyyppä, J., Kaartinen, H. 2009. Comparison between first pulse and last pulse laser scanner data in the automatic detection of buildings. Photogrammetric Engineering and Remote Sensing, 75 (2), 133-146.
  34. Polish Ministry of the Interior and Administration. 2011. Ordinance of the Minister of Interior and Administration of 3 November 2011 on aerial and satellite imagery databases and orthophotomaps and numerical terrain models.
  35. Renslow, M.S. 2012. Manual of Airborne Topographic LiDAR. American Society for Photogrammetry Remote Sensing, Bethesda, Maryland.
  36. Rupnik, B., Mongus, D., Žalik, B. 2015. Point Density Evaluation of Airborne LiDAR Datasets. Journal of Universal Computer Science, 21(4), 587-603. DOI: 10.3217/jucs-021-04-0587
  37. Rusu, R.B. 2010. Semantic 3d object maps for everyday manipulation in human living environments. KIKünstlicheIntelligenz, 24(4), 345-348.
  38. Stereńczak, K., Ciesielski, M., Bałazy, R., Zawiła-Niedźwiecki, T. 2016. Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests. European Journal of Remote Sensing, 49, 599–621.
  39. Tran, G., Nguyen, D., Milenkovic, M., Pfeifer, N. 2015. Potential of Full Waveform Airborne Laser Scanning Data for Urban Area Classification-Transfer of Classification Approaches Between Missions. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40 (7), 1317-1323.
  40. Vierling, K.T., Vierling, L.A., Gould, W.A., Martinuzzi, S., Clawges, R.M. 2008. Lidar: shedding new light on habitat characterization and modeling. Frontiers in Ecology and the Environment, 6(2), 90-98. DOI: 10.1890/07000110.1890/070001
  41. URS Corporation. 2012. Independent LiDAR Quality Control Report – Calvert Country Area of Interest. Available at http://webmaps.esrgc.org/LiDAR/portal/client/download/Metadata/Calvert/Final%20Calvert%20LiDAR%20QA%20Report.pdf
  42. Wechsler, N., Rockwell, T.K., Ben-Zion, Y. 2009. Application of high resolution DEM data to detect rock damage from geomorphic signals along the central San Jacinto Fault. Geomorphology, 113 (1), 82-96.
  43. Wężyk, P. 2014. Podręcznik dla uczestników szkoleń z wykorzystaniem produktów LiDAR. Głowny Urząd Geodezji i Kartografii, Warszawa.
  44. Wu, J., Yao, W., Chi, W., Zhao, X. 2011. Comprehensive quality evaluation of airborne lidar data. International Symposium on Lidar and Radar Mapping Technologies, 828604-828604. International Society for Optics and Photonics.10.1117/12.912588
  45. Xiong, X., Adan, A., Akinci, B., Huber, D. 2013. Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31, 325-337. DOI: 10.1016/j.autcon.2012.10.00610.1016/j.autcon.2012.10.006
  46. Yan, W.Y., Shaker, A., Habib, A., Kersting, A.P. 2012. Improving classification accuracy of airborne Li-DAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photo-grammetry and Remote Sensing, 67, 35-44. DOI: http://dx.doi.org/10.1016/j.isprsjprs.2011.10.00510.1016/j.isprsjprs.2011.10.005
  47. Zhang, Y.J., Xiong, X.D., Hu, X.Y. 2013. Rigorous Li-DAR Strip Adjustment with Triangulated Aerial Imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, II-5/W2, 361–366. DOI: 10.5194/isprsannals-II-5-W2-361-201310.5194/isprsannals-II-5-W2-361-2013
DOI: https://doi.org/10.2478/ffp-2020-0030 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 317 - 326
Submitted on: Aug 5, 2019
Accepted on: Aug 20, 2020
Published on: Dec 14, 2020
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Bartłomiej Kraszewski, Żaneta Piasecka, Rafał Sadkowski, Krzysztof Stereńczak, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.