Have a personal or library account? Click to login
Natural forest colonisation and soil formation on ash dump in southern taiga Cover

Natural forest colonisation and soil formation on ash dump in southern taiga

Open Access
|Dec 2020

References

  1. Almgren, G. 1990. Broadleaued forest: birch, aspen and alder in forestry and nature conservation. Skogstyrelsen, Jonkoping, Sweden.
  2. Arinushkina, E.V. 1970. Chemical soil analysis guide (in Russian). Moscow State University, Moscow, Russia.
  3. Barannik, L.P., Shmonov, A.M. 2005. Recommendations on forest recultivation of disturbed by coal mining lands in Kuzbass. In: Recultivation of disturbed lands in Siberia: coll. of scient. papers (in Russian). Kemerovo, Russia, 124–145.
  4. Chibrik, T.S. 2016. Biological Recultivation of Mine Industry Deserts: Facilitating the Formation of Phytocoenosis in the Middle Ural Region, Russia. In: Bioremediation and Bioeconomy (ed.: M.N.V. Prasad), Elsevier, 389–418. DOI: https://doi.org/10.1016/B978-0-12-802830-8.00016-210.1016/B978-0-12-802830-8.00016-2
  5. Chibrik, T.S., Elkin, Yu.A. 1991. Formation of phytocenoses on lands disturbed by industry: (biological recultivation) (in Russian). Ural University, Sverdlovsk, Russia.
  6. Chu, L.M. 2008. Natural revegetation of coal fly ash in a highly saline disposal lagoon in Hong Kong. Applied Vegetation Science, 11, 297–306. DOI: https://doi.org/10.3170/2008-7-1842710.3170/2008-7-18427
  7. Drazic, D., Vassileva, I. 2007. Rehabilitation of landscapes degraded by stone, clay and sand opencast mining in Serbia and Bulgaria. In: Biological re-cultivation and monitoring of disturbed industrial lands, Ekaterinburg, Russia, 826–845.
  8. Egorov, V.V. et al. 1977. Classification and diagnostics of soils of the USSR (in Russian). Kolos, Moscow.
  9. Firsova, V.P., Pavlova, T.S. 1983. Soil conditions and features of the biological cycle of substances in mountain pine forests (in Russian). Nauka, Moscow, Russia.
  10. Frank, J., Borchgrevink, I. 1982. Soil development under Norway spruce (Picea abies) and aspen (Populus tremula) stands at As. Meldinger fra Norges, Landbrukshogskole.
  11. Gafurov, F.G. 2008. Soils of Sverdlovsk region (in Russian). Publishing House of the Ural State University, Ekaterinburg, Russia.
  12. Gajic, G., Djurdjevic, L., Kostic, O., Jaric, S., Mitrovic, M., Pavlovic, P. 2018. Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Frontiers in Environmental Science, 6 (124), 1–24. DOI: https://doi.org/10.3389/fenvs.2018.0012410.3389/fenvs.2018.00124
  13. Jambhulkar, H., Juwarkar, A.A. 2009. Assessment of bioacumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicology and Environmental Safety, 72, 1122–1128. DOI: https://doi.org/10.1016/j.ecoenv.2008.11.00210.1016/j.ecoenv.2008.11.00219171381
  14. Kaar, E., Kiviste, K. 2010. Mining and rehabilitation in Estonia. Estonian University of Life Sciences. Tartu, Estonia.
  15. Makhnev, A.K. et al. 2002. Ecological principles and methods of biological reclamation of ash dumps of thermal power plants in the Urals (in Russian). Ekaterinburg, Russia.
  16. Mitrovic, M. 2012. Photosynthetic efficiency of four woody species growing on fly ash deposits of a Serbian «Nikola Nesla – A» thermoelectric plant. Polish Journal of Environmental Studies, 21 (5), 1339–1347.
  17. Mustafa, B., Hajdari, A., Krasniqi, F., Morina, I., Riesbeck, F., Sokoli, A. 2012. Vegetation of the ash dump of the “Kosova A” power plant and the slag dump of the “Ferronikeli” smelter in Kosovo. Environmental Earth Sciences, 4 (9), 823–834.
  18. National atlas of Russia: Nature and ecology. 2008. Astrel, Roskartografia, Moskow. (in Russian with English summary).
  19. Nikolaychenko, I.V. 2005. Features of natural forest growth of coal quarry rock dumps. In: Recultivation of disturbed lands in Siberia: coll. of scient. papers (in Russian). Kemerovo, Russia, 112–116.
  20. Pandey, V.C., Singh, K., Singh, R.P., Singh, B. 2012. Naturally growing Saccharum munja L. on the fly ash lagoons: A potential ecological engineer for the revegetation and stabilization. Ecological Engineering, 40, 95–99.10.1016/j.ecoleng.2011.12.019
  21. Pandey, V.C., Prakash, P., Bajpai, O., Kumar, A., Singh, N. 2015. Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration. Environmental Science and Pollution Research, 22, 2776–2787. DOI: https://doi.org/10.1007/s11356-014-3517-010.1007/s11356-014-3517-025209541
  22. Pandey, V.C. 2015. Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecological Engineering, 82, 1–5.10.1016/j.ecoleng.2015.04.002
  23. Pandey, V.C., Bajpai, O., Singh, N. 2016. Plant regeneration potential in fly ash ecosystem. Urban Forestry and Urban Greening, 15, 40–44. DOI: https://doi.org/10.1016/j.ufug.2015.11.00710.1016/j.ufug.2015.11.007
  24. Pandey, V.C., Singh, N. 2014. Fast green capping on coal fly ash basins through ecological engineering. Ecological Engineering, 73, 671–675. DOI: https://doi.org/10.1016/j.ecoleng.2014.09.03610.1016/j.ecoleng.2014.09.036
  25. Shaheen, S.M., Hooda, P.S., Tsadilas, C.D. 2014. Opportunities and challenges in the use of coal fly ash for soil improvements – A review. Journal of Environmental Management, 145, 249–267.10.1016/j.jenvman.2014.07.005
  26. Shakirov, A.V. 2011. Physical-geographical Zoning of the Urals (in Russian with English summary). UB RAC, Ekaterinburg, Russia.
  27. Smirnova, O.V. 2004. East European Forests: History in the Holocene and modernity (in Russian). Book 1. Nauka, Moscow.
  28. Smith, T.M., Smith, R.L. 2012. Elements of ecology. Pearson, Harlow.
  29. Tarchevsky, V.V. 1964. Biological methods of conservation of thermal power plants ash dumps of the Urals. In: Plants and industrial environment: coll. of scient. papers (in Russian). Ural State University, Sverdlovsk, Russia, 70–114.
  30. Uzarowicz, L., Skibab, M., Leuec, M., Zagórskia, Z., Gąsińskid, A., Trzcińskie, J. 2018. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution. Catena, 162, 255–269. DOI: https://doi.org/10.1016/j.catena.2017.11.00510.1016/j.catena.2017.11.005
  31. Uzarowicz, L. et al. 2017. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis. Catena, 157, 75–89. DOI: https://doi.org/10.1016/j.catena.2017.05.01010.1016/j.catena.2017.05.010
  32. Vorobyova, L.A. 2006. Theory and practice of chemical analysis of soils (in Russian with English summary). GEOS, Moscow, Russia.
  33. Weber, J. et al. 2015. Properties of soil materials derived from fly ash 11years after revegetation of post-mining excavation. Catena, 133, 250–254. DOI: https://doi.org/10.1016/j.catena.2015.05.01610.1016/j.catena.2015.05.016
  34. World Reference Base for Soil Resources. 2014. International soil system for naming soils and creating legends for soil maps. Food and Agriculture Organization of the United Nations, Rome, Italy.
DOI: https://doi.org/10.2478/ffp-2020-0029 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 306 - 316
Submitted on: Jun 4, 2020
Accepted on: Aug 26, 2020
Published on: Dec 14, 2020
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Olga Nekrasova, Tatiana Radchenko, Elena Filimonova, Natalia Lukina, Margarita Glazyrina, Maria Dergacheva, Anton Uchaev, Anna Betekhtina, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.