Have a personal or library account? Click to login
Can changes in forest management contribute to the reduction of CO2 in the atmosphere? Literature review, discussion and Polish example Cover

Can changes in forest management contribute to the reduction of CO2 in the atmosphere? Literature review, discussion and Polish example

Open Access
|Dec 2019

References

  1. Adamowicz, K. 2010. Price elasticity of demand for timber on primary local wood market in Poland. Sylwan, 154 (2), 130−138.
  2. Adamowicz, K. 2018. Assessment of the average rate of changes in atmospheric CO emissions in OECD countries. Archives of Environmental Protection, 44 (1), 97–102.
  3. Adamowicz, K., Noga, T. 2014. Multivariate analysis of bankruptcy in companies in the wood sector. Sylwan, 158 (9), 643−650.
  4. Adamowicz, K., Szramka, H., Starosta−Grala, M., Szczypa, P. 2016. Export and import of timber in selected member states of the European Union. Sylwan, 160 (3), 179−186.
  5. Alam, A., Kellomeaki, S., Kilpeleainen, A., Strandman, H. 2012. Effects of stump extraction on the carbon sequestration in Norway spruce forest ecosystems under varying thinning regimes with implications for fossil fuel substitution. GCB Bioenergy, 5, 445–458.10.1111/gcbb.12010
  6. Alexander, L.V. et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111 (D5), D05109.
  7. Church, J.A., White, N.J. 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33 (1), L01602.
  8. Baldocchi, D. 2008. Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australien Journal of Botany, 56, 1–26.10.1071/BT07151
  9. Baritz, R., Seufert, G., Montanarella, L., Van Ranst, E. 2010. Carbon concentrations and stocks in forest soils of Europe. Forest Ecology and Management, 260, 262–277.10.1016/j.foreco.2010.03.025
  10. Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.10.1111/j.1365-2389.1996.tb01386.x
  11. Batjes, N.H. 2014. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65, 10–21.10.1111/ejss.12114_2
  12. Bekele, A., Kellman, L., Beltrami, H. 2007. Soil profile CO2 concentrations in forested and clear cut sites in Nova Scotia, Canada. Forest Ecology and Management, 242, 587–597.10.1016/j.foreco.2007.01.088
  13. Bird, D.N., Pena, N., Zanchi, G. 2011. Zero, one, or in between: evaluation of alternative national and entity-level accounting for bioenergy. GCB Bioenergy, 4, 576–587. DOI:10.1111/j.1757-1707.2011.01137.x10.1111/j.1757-1707.2011.01137.x
  14. Boyland, M. 2006. The economics of using forests to increase carbon storage. Canadian Journal of Forest Research, 36, 2223–2234. http://dx.doi.org/10.1139/x06-09410.1139/x06-094
  15. Bubier, J.L., Crill, P.M., Moore, T.R., Savage, K., Varner, R.K. 1998. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochemical Cycles, 12, 703–714.10.1029/98GB02426
  16. Cherubini, F., Peters, G.P., Berntsen, T., Strømman, A.H., Hertwich, E. 2011a. CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy, 3, 413–426.10.1111/j.1757-1707.2011.01102.x
  17. Cherubini, F., Strømman, A.H., Hertwich, E. 2011b. Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy.Ecological Modelling, 223, 59–66.10.1016/j.ecolmodel.2011.06.021
  18. Chum, H. et al. 2012. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, UK.
  19. Church, J.A., White, N.J. 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33 (1), L01602.10.1029/2005GL024826
  20. Clark, F.B., Watt, R.F. 1971. Silvicultural methods for regenerating oaks. In: Proceedings of the Oak Symposium USDA Forest Service. Northeastern Forest Experiment Station, Newtown Square, Pennsylvania.
  21. Cooper, C.F. 1983. Carbon storage in managed forests. Canadian Journal of Forest Research, 13, 155–166.10.1139/x83-022
  22. Dedinec, A. et al. 2016. Towards post-2020 climate change regime: Analyses of various mitigation scenarios and contributions for Macedonia. Energy, 94, 124–137. DOI: 10.1016/j.energy.2015.10.08510.1016/j.energy.2015.10.085
  23. Degórski, M. 2005. Influence of forest management into the carbon storage in soil. Monitoring Środowiska Przyrodniczego, 6, 75–83.
  24. Díaz-Yáñez, O., Mola-Yudego, B., Anttila, P., Röser, D., Asikainen, A. 2013. Forest chips for energy in Europe: current procurement methods and potentials. Renewable and Sustainable Energy Reviews, 21, 562–571.10.1016/j.rser.2012.12.016
  25. Ding, W., Yu, H., Cai, Z., Han, F., Xu, Z. 2010. Responses of soil respiration to N fertilization in a loamy soil under maize cultivation. Geoderma, 155 (3/4), 381–389.10.1016/j.geoderma.2009.12.023
  26. Dixon, R. K., Winjum, J. K., Schroeder, P. E. 1993. Conservation and sequestration of carbon: the potential of forest and agroforest management practices. Global Environmental Change, 3 (2), 159–173.10.1016/0959-3780(93)90004-5
  27. Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski, J. 1994. Carbon pools and fluxes of global forest ecosystems. Science, 263, 185–190.10.1126/science.263.5144.185
  28. Drever, C.R., Peterson, G., Messier C., Bergeron, Y., Flannigan, M. 2006. Can forest management based on natural disturbances maintain ecological resilience? Canadian Journal of Forest Research, 36 (9), 2285−2299.10.1139/x06-132
  29. EC. 2009. Directive 2009/28/ECc of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. 2009/28. European union, Brussels. 2009/28.
  30. Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P. 2008. Land clearing and the biofuel carbon debt. Science, 319, 1235–1238.10.1126/science.1152747
  31. Forest Europe. 2015. State of Europe’s Forests 2015.
  32. Gaj, K. 2012. Carbon dioxide sequestration by Polish forest ecosystems. Leśne Prace Badawcze, 73 (1), 17–21.10.2478/v10111-012-0002-8
  33. Gaumont-Guay, D., Black, T.A., Griffis, T.J., Barr, A.G., Jassal, R.S., Nesic, Z. 2006. Interpreting the dependence of soil respiration on soil temperature and water contentin a boreal aspen stand. Agricultural and Forest Meteorology, 140 (1/4), 220–235.10.1016/j.agrformet.2006.08.003
  34. Goodrich, J.P., Campbell, D.I., Schipper, L.A. 2017. Southern Hemisphere bog persists as a strong carbon sink during droughts. Biogeosciences Discuss, 14, 1–26.10.5194/bg-2017-97
  35. Goud, E.M., Moore, T.R., Roulet, N.T. 2017. Predicting peatland carbon fluxes from non-destructive plant traits. Functional Ecology, 31, 1824–1833.10.1111/1365-2435.12891
  36. Guest, G., Cherubini, F., Strømman, A.H. 2012. The role of forest residues in the accounting for the global warming potential of bioenergy. GCB Bioenergy, 5, 459–466.10.1111/gcbb.12014
  37. GUS. 2017. Forestry 2017. Central Statistical Office.
  38. Haberl, H. et al. 2011. Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass and Bioenergy, 35, 4753–4769.10.1016/j.biombioe.2011.04.035
  39. Haberl, H. et al. 2012. Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energy Policy, 45, 18–23.10.1016/j.enpol.2012.02.051
  40. Halpin, P.N. 1997. Global climate change and natural− area protection: Management responses and research directions. Ecological Applications, 7 (3), 828−843.10.1890/1051-0761(1997)007[0828:GCCANA]2.0.CO;2
  41. Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A. 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48 (1), 115–146.10.1023/A:1006244819642
  42. Harmon, M.E., Ferrell, W.K., Franklin, J.F. 1990. Effects of carbon storage on conversion of old-growth forests to young forests. Science, 247, 699–702.10.1126/science.247.4943.699
  43. Holtsmark, B. 2012a. Harvesting in boreal forests and the biofuel carbon debt. Climatic Change, 112, 415–428.10.1007/s10584-011-0222-6
  44. Holtsmark, B. 2012b. The outcome is in the assumptions: analyzing the effects on atmospheric CO2 levels of increased use of bioenergy from forest biomass. GCB Bioenergy, 5, 467–473.10.1111/gcbb.12015
  45. Houghton, J.T, Jenkins, G.J., Ephraums, J.J. 1990. IPCC Climate Change. Cambridge University Press.
  46. Houghton, J.T., Callander, B.A., Varney, S.K. 1992. The 1992 Supplementary Report to the IPCC Assessment. University Press, Cambridge, UK.
  47. Hudiburg, T.W., Law, B.E., Wirth, C., Luyssaert, S. 2011. Regional carbon dioxide implications of forest bioenergy production. Nature Climate Change, 1, 419–423.10.1038/nclimate1264
  48. IEA. 2008. Energy Technology Perspectives 2008. Scenarios and Strategies to 2050. International Energy Agency (IEA), Paris.
  49. IPCC. 2005. Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.
  50. IPCC. 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.
  51. Johnson, D.W. 1992. Effects of forest management on soil carbon storage. Water, Air, and Soil Pollutution, 64, 83–120.10.1007/BF00477097
  52. Johnson, E. 2009. Goodbye to carbon neutral: getting biomass footprints right. Environmental Impact Assessment Review, 29, 165–168.10.1016/j.eiar.2008.11.002
  53. Kaipainen, T., Liski, J., Pussinen, A., Karjalainen, T. 2004. Managing carbon sinks by changing rotation length in European forests. Environmental Science and Policy, 7, 205–219.10.1016/j.envsci.2004.03.001
  54. Kim, Y.J., He, W., Ko, D., Chung, H., Yoo, G. 2017. Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site. Science of The Total Environment, 607–608, 1278–1285.10.1016/j.scitotenv.2017.07.030
  55. Kinsman, J., Kaster, G., Kuhn, E., McIntyre, R. 1997. Utility forest carbon management program/ Utilities Carbon Company. Energy Conversion and Management, 38, 563–568.10.1016/S0196-8904(96)00328-7
  56. Koncz, P. et al. 2015. Higher soil respiration under mowing than under grazing explained by biomass differences. Nutrient Cycling in Agroecosystems, 103 (2), 201–215.10.1007/s10705-015-9732-3
  57. Krausmann, F., Erb, K. H., Gingrich, S., Lauk, C., Haberl, H. 2008. Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecological Economics, 65, 471–487.10.1016/j.ecolecon.2007.07.012
  58. Kuemmerle, T. et al. 2011. Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 17, 1335–1349.10.1111/j.1365-2486.2010.02333.x
  59. Lambin, E.F., Meyfroidt, P. 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108, 3465–3472.10.1073/pnas.1100480108
  60. Lamers, P., Junginger, M. 2013. The ‘debt’ is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels, Bioproducts and Biorefining, 7, 373–385.10.1002/bbb.1407
  61. Latta, G.S., Baker, J.S., Ohrel, S. 2018. A Land Use and Resource Allocation (LURA) modeling system for projecting localized forest CO2 effects of alternative macroeconomic futures. Forest Policy and Economics, 87, 35–48.10.1016/j.forpol.2017.10.003
  62. Le Quere, C. et al. 2009. Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–836.
  63. Lindahl, K.B. et al. 2017. The Swedish forestry model: More of everything? Forest Policy and Economics, 77, 186–199.10.1016/j.forpol.2015.10.012
  64. Liski, J., Pussinen, A., Pingoud, K., Makipaa, R., Karjalainen, T. 2001. Which rotation length is favorable to carbon sequestrations? Canadian Journal of Forest Research, 31, 2004–2013.10.1139/x01-140
  65. Mäkipää, R., Linkosalo, T., Komarov, A., Mäkelä, A., 2014. Mitigation of climate change with biomass harvesting in Norway spruce stands: are harvesting practices carbon neutral? Canadian Journal of Forest Research, 45, 217–225.10.1139/cjfr-2014-0120
  66. Mantau, U. et al. 2010. Real potential for changes in growth and use of EU forests. Methodology report. University of Hamburg, UNECE/FAO, EFI, Probos and Metla, Hamburg, June 2010
  67. Markewitz, D. 2006. Fossil fuel carbon emissions from silviculture: Impacts on net carbon sequestration in forests. Forest Ecology and Management, 236 (2/3), 153–161.10.1016/j.foreco.2006.08.343
  68. Markovska, N. et al. 2016. Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems. Energy, 115 (3), 1504–1512. DOI: 10.1016/j.energy.2016.10.08610.1016/j.energy.2016.10.086
  69. Marland, G., Schlamadinger, B. 1997. Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis. Biomass and Bioenergy, 13, 389–397.10.1016/S0961-9534(97)00027-5
  70. Matovic, D. 2011. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy, 36, 2011–2016.10.1016/j.energy.2010.09.031
  71. McKechnie, J., Colombo, S., Chen, J., Mabee, W., MacLean, H.L. 2011. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environmental science and Technology, 45 (2), 789–795.10.1021/es1024004
  72. Meinshausen, M. et al. 2009. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 458, 1158–1163.10.1038/nature08017
  73. Melillo, J.M. et al.2009. Indirect emissions from biofuels: how important? Science, 326, 1397–1399.10.1126/science.1180251
  74. Melin, Y., Petersson, H., Egnell, G. 2010. Assessing carbon balance trade-offs between bioenergy and carbon sequestration of stumps at varying time scales and harvest intensities. Forest Ecology and Management, 260, 536–542.10.1016/j.foreco.2010.05.009
  75. Mika, A.M., Keeton, W.S. 2015. Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast. GCB Bioenergy, 7, 438–454.10.1111/gcbb.12143
  76. Millar, C.I., Stephenson, N.L., Stephens, S.L. 2007. Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17 (8), 2145−2151.10.1890/06-1715.1
  77. Minasny, B. et al. 2017. Soil carbon 4 per mille. Geoderma, 292, 59–86.10.1016/j.geoderma.2017.01.002
  78. Niinimäki, S., Tahvonen, O., Mäkelä, A., Linkosalo, T. 2013. On the economics of Norway spruce stands and carbon storage. Canadian Journal of Forest Research, 43, 637–648.10.1139/cjfr-2012-0516
  79. Noss, R.F. 2001. Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology, 15 (3), 578−590.10.1046/j.1523-1739.2001.015003578.x
  80. Orellano, H.A.T., Isla, F.I. 2004. Developing sinks for CO2 through forestation of temperate coastal barriers: an environmental business. Regional Environmental Change, 4, 70–76.10.1007/s10113-003-0065-4
  81. Pearson, P.N., Palmer, M.R. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.10.1038/35021000
  82. Peters, R.L. 1990. Effects of global warming on forests. Forest Ecology and Management, 35 (1/2), 13−33.10.1016/0378-1127(90)90229-5
  83. Pihlainen, S., Tahvonen, O., Niinimäki, S. 2014. The economics of timber and bioenergy production and carbon storage in Scots pine stands. Canadian Journal of Forest Research, 44 (9), 1091–1102.10.1139/cjfr-2013-0475
  84. Pires, J.C.M. 2017. COP21: The algae opportunity? Renewable and Sustainable Energy Reviews, 79 (C), 867–877. DOI:10.1016/j.rser.2017.05.19710.1016/j.rser.2017.05.197
  85. Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G. 1982. Soil carbon pool and world life zones. Nature, 298, 156–159.10.1038/298156a0
  86. Raupach, M.R. et al. 2009. Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–836.10.1038/ngeo689
  87. Rayner, N.A. et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108 (D14), 4407–4443.10.1029/2002JD002670
  88. Regulation (EU) No 525/2013 of the European Parliament and of the Council of 21 May 2013 on a mechanism for monitoring and reporting greenhouse gas emissions and for reporting other information at national and Union level relevant to climate change and repealing Decision No 280/2004/EC.
  89. Regulation of the Minister of Agriculture and Rural Development of May 23, 2019 amending the ordinance on detailed conditions and mode of granting financial aid under the sub-measure Support for afforestation and creation of forested areas covered by the Rural Development Program for 2014–2020 (Journal of Laws item 995). http://dziennikustaw.gov.pl/du/2019/995/1
  90. Repo, A., Ahtikoski, A., Liski, J. 2015. Cost of turning forest residue bioenergy to carbon neutral. Forest Policy and Economics, 57, 12–21.10.1016/j.forpol.2015.04.005
  91. Repo, A., Känkänen, R., Tuovinen, J.P., Antikainen, R., Tuomi, M., Vanhala, P., Liski, J. 2012. Forest bioenergy climate impact can be improved by allocating forest residue removal. GCB Bioenergy, 4, 202–212. http://dx.doi.org/10.1111/j.1757-1707.2011.01124.x10.1111/j.1757-1707.2011.01124.x
  92. Repo, A., Tuomi, M., Liski, J. 2011. Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. GCB Bioenergy, 3, 107–115.10.1111/j.1757-1707.2010.01065.x
  93. Repo, A., Tuovinen, J.P., Liski, J. 2015. Can we produce carbon and climate neutral forest bioenergy? GCB Bioenergy, 7 (2), 253–262.10.1111/gcbb.12134
  94. Richardson, J.L., Edmonds, W.J. 1987. Linear regression estimations of Jenny’s relative effectiveness of state factor equations. Soil Science, 144, 203–208.10.1097/00010694-198709000-00006
  95. Richter, D.D, Houghton, R.A. 2011. Gross CO2 fluxes from land-use change: implications for reducing global emissions and increasing sinks. Carbon Management, 2, 41–47.10.4155/cmt.10.43
  96. Richter, D.D., Markewitz, D., Trumbore, S.E., Wells, C.G. 1999. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 400, 56–58.10.1038/21867
  97. Rignot, E., Kanagaratnam, P. 2006. Changes in the velocity structure of the Greenland ice sheet. Science, 311, 986–990.10.1126/science.1121381
  98. Rivers, J.S., Siegel, D.I., Chasar, L.S., Chanton, J.P., Glaser, P.H., Roulet, N.T., McKenzie, J.M. 1998. A stochastic appraisal of the annual carbon budget of a large circumboreal peatland, Rapid River Watershed, northern Minnesota. Global Biogeochemical Cycles, 12, 715–727.10.1029/98GB02636
  99. Rockstrom, J. et al. 2009. A safe operating space for humanity. Nature, 461, 472–475.10.1038/461472a
  100. Rogelj, J. et al. 2016. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 534, 631.10.1038/nature18307
  101. Routa, J., Kellomaki, S., Peltola, H. 2012. Impacts of intensive management and land-scape structure on timber and energy wood production and net CO2 emissions from energy wood use of Norway spruce. BioEnergy Research, 5, 106–123.10.1007/s12155-011-9115-9
  102. Sala K. 2017. Industrial Use of biomass in Poland. Conditions and barriers. Studies of the Industrial Geography Commission of the Polish Geographical Society, 31 (4), 148–156.10.24917/20801653.314.10
  103. Sathre, R., Gustavsson, L. 2012. Time-dependent radiative forcing effects of forest fertilization and biomass substitution. Biogeochemistry, 109, 203–218.10.1007/s10533-011-9620-0
  104. Scarlat, N., Dallemand, J.F., Banja, M. 2013. Possible impact of 2020 bioenergy targets on European Union land use. A scenario-based assessment from national renewable energy action plans proposals. Renewable and Sustainable Energy Reviews,18, 595–606.10.1016/j.rser.2012.10.040
  105. Schelhaas, M.J. et al. 2004. CO2FIX V 3.1 - a modelling framework for quantifying carbon sequestration in forest ecosystems. Alterra Report, 1068, 1–122.
  106. Schimel, D.S. et al. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8 (3), 279–293.10.1029/94GB00993
  107. Schimel, D.S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1, 77–91.10.1111/j.1365-2486.1995.tb00008.x
  108. Schlamadinger, B., Spitzer, J., Kohlmaier, G.H., Lüdeke, M. 1995. Carbon balance of bioenergy from logging residues. Biomass Bioenergy, 8, 221–234.10.1016/0961-9534(95)00020-8
  109. Schlesinger, W.H. 1982. Carbon storage in the caliche of the arid world: a case study from Arizona. Soil Science, 133, 247–255.10.1097/00010694-198204000-00008
  110. Schulze, E.D., Körner, C., Law, B.E., Haberl, H., Luyssaert, S. 2012. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy, 4, 611–616.10.1111/j.1757-1707.2012.01169.x
  111. Schwartz, S.E. 2008. Uncertainty in climate sensitivity: causes, consequences, challenges. Energy and Environmental Science,1, 430–453.10.1039/b810350j
  112. Searchinger, T. et al. 2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319, 1238–1240.10.1126/science.1151861
  113. Searchinger, T.D. et al. 2009. Fixing a critical climate accounting error. Science, 326, 527–528.10.1126/science.1178797
  114. Smith, P. et al. 2010. Competition for land. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2941–2957.10.1098/rstb.2010.0127
  115. Solomon, S., Plattner, G.K., Knutti, R., Friedlingstein, P. 2009. Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 106 (6), 1704–1709.10.1073/pnas.0812721106
  116. Spittlehouse, D.L., Stewart, R.B. 2003. Adaptation to climate change in forest management. BC Journal of Ecosystems and Management, 4 (1), 1−11.
  117. Stupak, I. et al. 2007. Sustainable utilisation of forest biomassfor energy-possibilities and problems: policy, legislation, certification, and recommendations and guidelines in the Nordic, Baltic, and other European countries. Biomass and Bioenergy, 31, 666–684.10.1016/j.biombioe.2007.06.012
  118. Szulczewski, M.L., MacMinn, C.W., Herzog, H.J., Juanes, R. 2012. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proceedings of the National Academy of Sciences of the United States of America, 109 (14), 5185–5189.10.1073/pnas.1115347109
  119. Taseska-Gjorgievska, V., Markovska, N., Callaway, J. 2012. Evaluation of climate change impacts on energy demand. Energy, 48 (1), 88–95. DOI: 10.1016/j.energy.2012.06.05310.1016/j.energy.2012.06.053
  120. Theng, B.K.G., Tate, K.R., Sollins, P. 1989. Constituents of organic matter in temperate and tropical soils. In: Dynamics of soil organic matter in tropical ecosystems (eds.: D.C. Coleman, J.M. Oades, G. Uehara). University of Hawaii, Hawaii, 5–32.
  121. Timmons, D.S., Buchholz, T., Veeneman, C.H. 2016. Forest biomass energy: assessing atmospheric carbon impacts by discounting future carbon flows. GCB Bioenergy, 8 (3), 631–643.10.1111/gcbb.12276
  122. Trabalka, J.R., Reichle, D.E. 1986. The Changing Carbon Cycle; a Global Analysis. Springer - Verlag, New York.10.1007/978-1-4757-1915-4
  123. UNFCC Secretariat. 2008. Challenges and opportunities for mitigation in the agricultural sector, Technical Paper. UNFCC FCCC/TP/2008/8, Geneva.
  124. Walker, B., Steffen, W. 1997. An overview of the implications of global change for natural and managed terrestrial ecosystems. Conservation Ecology, 1 (2), 2–17.10.5751/ES-00028-010202
  125. Walker, T. et al. 2010. Biomass Sustainability and Carbon Policy Study. June 2010 NCI-2010-03. Manomet Center for Conservation Sciences, Massachusetts.
  126. Walker, T., Cardellichio, P., Gunn, J.S., Saah, D.S., Hagan, J.M. 2013. Carbon accounting for woody biomass from Massachusetts (USA) managed forests: a framework for determining the temporal impacts of wood biomass energy on atmospheric greenhouse gas levels. Journal of Sustainable Forestry, 32, 130–158.10.1080/10549811.2011.652019
  127. Wear, D., Coulston, J.W. 2015. From sink to source: regional variation in U.S. forest carbon futures. Scientific Reports, 5, 16518.10.1038/srep16518
  128. Wennersten, R., Sun, Q., Li, H. 2015. The future potential for Carbon Capture and Storage in climate change mitigation–an overview from perspectives of technology, economy and risk. Journal of Cleaner Production, 103, 724–736.10.1016/j.jclepro.2014.09.023
  129. White, R.E., Davidson, B., Lam, S.K., Chen, D. 2018. A critique of the paper “Soil carbon 4 per mille” by Minasny et al. (2017). Geoderma, 309, 115–117. DOI: 10.1016/j.geoderma.2017.05.02510.1016/j.geoderma.2017.05.025
  130. Winjum, J.K., Meganck, R.A, Dixon, R.K. 1993. Expanding global forest management - an easy 1st proposal. Journal of Forestry, 91, 38–42.10.1093/jof/91.4.38
  131. Wójcik, J. 2013. Możliwości zwiększania sekwestracji węgla w ekosystemach leśnych w warunkach zmian klimatycznych. Gromadzenie węgla w glebie, ochrona materii organicznej. Materials from the panel of experts of the National Forest Program ‘Climate’ 18th June 2013, Sękocin Stary.
  132. Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S. 2010. Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56.10.1038/ncomms1053
  133. Yanai, R.D., Currie, W.S., Goodale, C.L. 2003. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems, 56, 197–212.10.1007/s10021-002-0206-5
  134. Young, D.M., Baird, A.J., Morris, P.J., Holden, J. 2017. Simulating the long-term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resources Research, 53, 6510–6522.10.1002/2016WR019898
  135. Zachos, J.C., Dickens, G.R., Zeebe, R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451 (7176), 279–283.10.1038/nature06588
  136. Zanchi, G., Pena, N., Bird, N. 2011. Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. GCB Bioenergy, 4, 761–772.10.1111/j.1757-1707.2011.01149.x
  137. Zarządzenie nr 2 Dyrektora Generalnego Lasów Państwowych z dnia 17 stycznia 2017 r. w sprawie realizacji w formie wspólnego przedsięwzięcia jednostek organizacyjnych Lasów Państwowych projektu rozwojowego o charakterze pilotażowym pod nazwą „Leśne Gospodarstwa Węglowe”. http://www.lasy.gov.pl/pl/pro/publikacje/biuletyn-informacyjny-lasow-panstwowych/2017/bilp-2-2017
  138. Zetterberg, L., Uppenberg, S., Åhman, M. 2004. Climate impact from peat utilization in Sweden. Mitigation and Adaptation Strategies for Global Change, 9, 37–76.10.1023/B:MITI.0000009894.59772.af
  139. Zummo, L.M., Friedland, A.J. 2011. Soil carbon release along a gradient of physical disturbance in a harvested northern hardwood forest. Forest Ecology and Management, 261, 1016–1026.10.1016/j.foreco.2010.12.022
DOI: https://doi.org/10.2478/ffp-2019-0029 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 299 - 318
Submitted on: Aug 21, 2019
Accepted on: Sep 9, 2019
Published on: Dec 30, 2019
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Krzysztof Adamowicz, Ljiljana Keca, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.