Have a personal or library account? Click to login
The influence of surface fire on radial and height growth of Pinus sylvestris L. in forest-steppe in Ukraine Cover

The influence of surface fire on radial and height growth of Pinus sylvestris L. in forest-steppe in Ukraine

By: Iryna Koval and  Serhiy Sydorenko  
Open Access
|Jul 2019

References

  1. Anuchin, N. 1982. Forest Mensuration. Moscow, Lesnaya Promyshlennost.
  2. Bauer, G., Speck, T., Blömer, J. 2010. Insulation capability of the bark of trees with different fire adaptation. Journal of Material Science, 45, 5950–5959.10.1007/s10853-010-4680-4
  3. Bitvinskas, T. 1974. Dendroclimatic studies. Gidrometeoizdat Publishing House, Leningrad, USSR (in Russian).
  4. Brown, J. 1995. Fire regimes and their relevance to ecosystem management. Proceedings of the society of American forester’s, 1994 national convention, 171–178.
  5. Cook, E., Kairiukstis, L. 1990. Methods of Dendrochronology – Applications in the Environmental Sciences, Doredrecht, the Netherlands.10.1007/978-94-015-7879-0
  6. Drobyshev, I., Niklasson, M., Angelstam, P. 2004. Contrasting tree-ring data with fire record in a pine-dominated landscape in the Komi Republic (eastern European Russia): recovering a common climate signal. Silva Fennica, 38, 43–53.10.14214/sf.434
  7. Elliott, K., Vose, J., Clinton, B. 2002. Growth of eastern white pine Pinus strobus L. related to forest floor consumption by prescribedm fire in the southern Appalachians. Southern Journal of Applied Forestry, 26, 18–25.10.1093/sjaf/26.1.18
  8. Erdős, L. 2014. Post-fire regeneration of a forest-steppe: vegetation status 20 years after the fire. Tiscia, 40, 11–15.
  9. Flannigan, M., Krawchuk, M., de Groot, W., Wotton, B., Gowman L. 2009. Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18, 483–507.10.1071/WF08187
  10. Ford, C., Emily, S., Gordon A. 2010. Long-term effects of fire and fire-return interval on population structure and growth of longleaf pine (Pinus palustris). Canadian Journal of Forest Research, 40, 1410–1420.10.1139/X10-080
  11. Furayev V.V. 2008. Piroecological properties of Scots pine in Middle Siberia. Coniferous boreal zone, 103–108.
  12. Gill, A.M. 1975. Fire and the Australian flora: a review. Australian Forestry, 38, 4–25.10.1080/00049158.1975.10675618
  13. González-Tagle, M., Schwendenmann, L., Pérez, J., Schulz, R. 2008. Forest structure and woody plant species composition along a fire chronosequence in mixed pine–oak forest in the Sierra Madre Oriental, Northeast Mexico. Forest Ecology and Management, 256, 161–167.10.1016/j.foreco.2008.04.021
  14. Grom, M. 2007. Forest mensuration, Lviv.
  15. Gulak, O. 2013. Preservation of fire safety of forests at the present stage of development of our state. Scientific Herald of NULES of Ukraine, 182, 190–194.
  16. Hoffmann, W. 2002. Direct and indirect effects of fire on radial growth of cerrado savanna trees. Journal of Tropical Ecology, 18, 137–142.10.1017/S0266467402002080
  17. Hulida, E. 2007. Predicting the spread of forest fires. Fire Safety Problems, 21, 73–79.
  18. Koval, I. 2010. Radial growth as an indicator of forest ecosystem stability on the example of pine forests of the green zone of Kharkiv. Scientific Bulletin of the National University of Life and Environmental Sciences of Ukraine, 147, 223–232.
  19. Koval, I., et al. 2017. Dendrochronological aspects of post-pyrogenic development of pine stands in Polissya and Forest-Steppe. In: Proceedings of Kharkiv National University named after V.N. Karazin Conference “XIII Ukrainian scientific Taliiv reading”, 14–16 April 2017 (eds.: N.V. Maksymenko, S.A. Baliuk). Kharkiv, Ukraine, 28–31.
  20. Makkonen, S., Huuhilo, K., Utriainen, J., Holopainen, T, Kainulainen, P. 2016. Radial ring width and wood structure in the ozone-exposed Norway spruce seedlings grown under different nitrogen regimes. Boreal Environment Researches, 21, 149–165.
  21. Murphy, B., Russel-Smith, J., Prior, L. 2010. Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Global Change Biology, 16, 331–343.10.1111/j.1365-2486.2009.01933.x
  22. Marozas, V., Plaušinyte, E., Augustaitis, A., Kačiulytė, A. 2011. Changes of ground vegetation and tree-ring growth after surface fires in Scots pine forests. Acta Biol. Universit. Daugavpil., 11 (2), 156–162.
  23. Mutch, L., Swetnam, T. 1995. Effects of fire se-verity and climate on ring-width growth of giant sequoia after burning. Proceedings: Symposium on Fire in Wilderness and Park Management. Forest Service General Technical Report Intermountain, 320, 241–246.
  24. Odhiambo, B., Meincken, M, Seifert, T. 2014. The protective role of bark against fire damage: a comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees, 28, 555–565.10.1007/s00468-013-0971-0
  25. Parks, S., Miller, C., Abatzoglou, J., Holsinger, L., Parisien, M., Dobrowski, S. 2016. How will climate change affect wildland fire severity in the western US? Environmental Research Letters, 3, 3–10.10.1088/1748-9326/11/3/035002
  26. Riegel, G., Miller, R., Krueger, W. 1992. Competition for resources between understory vegetation and overstory Pinus ponderosa in Northeastern Oregon. Ecological Applications, 2, 71–85.10.2307/194189027759196
  27. Rötzer, T., Seifert, T., Gayler, S., Priesack, E., Pretzsch, H. 2012. Effects of Stress and Defence Allocation on Tree Growth: Simulation Results at the Individual and Stand Level. In: Tracing Carbon Fluxes: Resolving Complexity Using Isotopes (eds.: R. Matyssek, H. Schnyder, W. Oßwald, H. Pretzsch). Technische Universitat Munchen, 401–432.10.1007/978-3-642-30645-7_18
  28. Rusalenko, A. 1986. Annual growth of trees and moisture supply. Science and Technology, Minsk, Belarus.
  29. Rybalova, O., Belan, S. 2011. Measures to reduce the impact of forest fires on the ecological state of small rivers. East European Journal of Advanced Technologies, 6, 52–56.
  30. Schweingruber, F. 1993. Trees and wood in dendrochronology. Morphological, anatomical, and tree-ring analytical characteristics of trees frequently used in dendrochronology. Berlin, New York.10.1007/978-3-642-77157-6
  31. Seifert, T., Meincken, M., Odhiambo, B. 2017. The effect of surface fire on tree ring growth of Pinus radiata trees. Annals of Forest Science, 34–74.10.1007/s13595-016-0608-8
  32. Skov, K., Kolb, T., Wallin, K. 2004. Tree size and drought affect ponderosa pine physiological response to thinning and burning treatments. Forestry Science, 50, 81–91.10.1093/forestscience/50.1.81
  33. Smith, K., Arbellay, E., Falk, D., Sutherland, E. 2016. Macroanatomy and compartmentalization of recent fire scars in three North American conifers. Canadian Journal of Forest Research, 46, 535–542.10.1139/cjfr-2015-0377
  34. Sydorenko, S., Voron, V., Melnik, E., Sydorenko, A. 2015. Peculiarities of the mature pine stands formation after surface fires. Forestry and Forest Melioration, 157, 169–176.
  35. Van Mantgem, P., Stephenson, N., Byrne, J., Daniels, L., Franklin, J. 2009. Widespread increase of tree mortality rates in the western United States. Science, 323, 521–524.10.1126/science.1165000
  36. Van Wagner, C. 1973. Height of crown scorch in Forest fires. Canadian Journal of Forest Research, 3, 373–378.10.1139/x73-055
  37. Wallin, K., Kolb, T., Skov, K., Wagner, M. 2003. Effects of crown scorch on ponderosa pine resistance to bark beetles in Northern Arizona. Environmental Entomology, 32, 652–661.10.1603/0046-225X-32.3.652
  38. Wesolowski, A., Adams, M., Pfautsch, S. 2014. Insulation capacity of three bark types of temperate Eucalyptus species. Forest Ecology and Management, 313, 224–232.10.1016/j.foreco.2013.11.015
  39. Zybtsev, S., Borsuk, O. 2012. Forest Protection from Fires in the World and in Ukraine. Challenges of the XXI Century and Development Prospects, 1, 49–63.
DOI: https://doi.org/10.2478/ffp-2019-0012 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 123 - 134
Submitted on: Jan 14, 2019
Accepted on: May 25, 2019
Published on: Jul 25, 2019
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Iryna Koval, Serhiy Sydorenko, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.