Have a personal or library account? Click to login
Sigmoid growth curves, a new approach to study the dynamics of the epicotyl emergence of oak Cover

Sigmoid growth curves, a new approach to study the dynamics of the epicotyl emergence of oak

Open Access
|May 2019

References

  1. Akaike, H. 1974. A new look at the statistical model identification. IEEE transactions on automatic control, AC-19, 716–723. DOI: 10.1109/TAC.1974.110070510.1109/TAC.1974.1100705
  2. Ashton, M.S., Larson, B.C. 1996. Germination and seedling growth of Quercus (section Erythrobalanus) across openings in a mixed-deciduous forest of southern New England, USA. Forest Ecology and Management, 80, 81–94.10.1016/0378-1127(95)03636-9
  3. Bates, D.M., Watts, D.G. 1980. Relative curvature measures of nonlinearity (with discussion). Journal of the Royal Statistical Society, Series B, 42, 1–25.10.1111/j.2517-6161.1980.tb01094.x
  4. Box, M.J. 1971. Bias in nonlinear estimation (with discussion). Journal of the Royal Statistical Society, Series B, 33, 171–201.10.1111/j.2517-6161.1971.tb00871.x
  5. Burnham, K.P., Anderson D.R. 2002. Model selection and multimodel inference: a practical information-theoretical approach. 2d ed. Springer-Verlag, New York.
  6. Dennis, J.E. Jr., Schnabel R.B. 1983. Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs.
  7. Fenner, M., Thompson, K. 2005. The ecology of seeds. Cambridge University Press, Cambridge.10.1017/CBO9780511614101
  8. García-De La Cruz, Y., López-Barrera, F., Ramos-Prado, J.M. 2016. Germination and seedling emergence of four endangered oak species. Madera y Bosques, 22 (2), 77–87. https://www.redalyc.org/articulo.oa?id=6174930600610.21829/myb.2016.2221326
  9. Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 182, 513–585.
  10. Haines, L.M., O’Brien, T.E., Clarke, G.P.Y. 2004. Kurtosis and curvature measures for nonlinear regression models. Statisitica Sinica, 14, 547–570.
  11. Hawkins, T.S. 2018. Regulating acorn germination and seedling emergence in Quercus pagoda (Raf.) as it relates to natural and artificial regeneration. New Forests. DOI: 10.1007/s11056-018-9667-z10.1007/s11056-018-9667-z
  12. Hougaard, P. 1982. Parameterizations of nonlinear models. Journal of the Royal Statistical Society, Series B, 44, 244–252.10.1111/j.2517-6161.1982.tb01205.x
  13. Hougaard, P. 1985. The appropriateness of the asymptotic distribution in a nonlinear regression model in relation to curvature. Journal of the Royal Statistical Society, Series B, 47, 103–114.10.1111/j.2517-6161.1985.tb01336.x
  14. Kramer, P.J., Kozlowski, T.T. 1979. Physiology of woody plants. Academic Press, New York.
  15. Makeham, W.M. 1873. On the integral of Gompertz’s function for expressing the values of sums depending upon the contingency of life. Journal of the Institute of Actuaries and Assurance Magazine, 17 (5), 305–327. DOI: 10.1017/S204616740004426810.1017/S2046167400044268
  16. Marquardt, D.W. 1963. An algorithm for least squares estimation of nonlinear parameters. Journal of the Society of Industrial Applied Mathematics, 2, 431–441. DOI: 10.1137/011103010.1137/0111030
  17. Ratkowsky, D.A. 1983. Nonlinear regression modelling. Marcel Dekker, New York.
  18. Ratkowsky, D.A. 1990. Handbook of nonlinear regression models. Marcel Dekker, New York.
  19. Ratkowsky, D.A. 1993. Principles of nonlinear regression modelling. Journal of Industrial Microbiology and Biotechnology, 12 (3), 195–199. DOI: 10.1007/BF0158419010.1007/BF01584190
  20. Ratkowsky, D.A., Reddy, G.V.P. 2017. Empirical model with excellent statistical properties for describing temperature-dependent developmental rates of insects and mites. Annals of the Entomological Society of America, 110, 302–309. DOI: 10.1093/aesa/saw09810.1093/aesa/saw098
  21. Richards, F.J. 1959. A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–300. DOI: 10.1093/jxb/10.2.29010.1093/jxb/10.2.290
  22. SAS Institute, 2017. Inc. SAS/STAT 14.3 User’s Guide; SAS Institute Inc.: Cary, NC, USA.
  23. Seber, G.A.F., Wild, C.J. 1989. Nonlinear regression. Wiley & Sons Publication, New York. ISBN 0-471-47135-610.1002/0471725315
  24. Struve, D.K. 1998. Seed conditioning of red oak: a recalcitrant North American seed. Scientia Agricola, 55 special issue Piracicaba, 67–73. DOI: 10.1590/S0103-9016199800050001210.1590/S0103-90161998000500012
  25. Tjørve, E., Tjørve, K.M.C. 2010. A unified approach to the Richards-model family for use in growth analyses: Why we need only two model forms. Journal of Theoretical Biology, 267, 417–425. DOI: 10.1016/j. jtbi.2010.09.008 PMID: 2083187710.1016/j.jtbi.2010.09.008PMID:20831877
  26. Tjørve, K.M.C., Tjørve, E. 2017a. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE, 12 (6), e0178691. DOI: 10.1371/journal.pone.017869110.1371/journal.pone.0178691545944828582419
  27. Tjørve, K.M.C., Tjørve, E. 2017b. A proposed family of unified models for sigmoidal growth. Ecological Modelling, 359, 117–127. DOI: 10.1016/j.ecolmo-del.2017.05.00810.1016/j.ecolmo-del.2017.05.008
  28. Vrána, J., Remeš, V., Matysioková, B., Tjørve, K.M., Tjørve, E. 2018. Choosing the right sigmoid growth function using the unified-models approach. Ibis. DOI: 10.1111/ibi.1259210.1111/ibi.12592
  29. Verhulst, P.F. 1838. A note on population growth (in French). Correspondence Mathematiques et Physiques, 10, 113–121.
  30. Verhulst, P.F. 1845. Mathematical researches into the law of population growth increase (in French). Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18, 1–42.10.3406/marb.1845.3438
  31. Zwietering, M.H., Jongenburger, I., Rombouts, F.M. 1990. Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875–1881. DOI: 0099-2240/90/061875-07$02.00/010.1128/aem.56.6.1875-1881.199018452516348228
DOI: https://doi.org/10.2478/ffp-2019-0003 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 30 - 41
Submitted on: Jan 10, 2019
Accepted on: Feb 5, 2019
Published on: May 4, 2019
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Joanna Ukalska, Szymon Jastrzębowski, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.