Have a personal or library account? Click to login
Carbon Sequestration of Above-Ground Biomass of Pinus Sylvestris L. in the Green Belt of the City of Astana Cover

Carbon Sequestration of Above-Ground Biomass of Pinus Sylvestris L. in the Green Belt of the City of Astana

Open Access
|Oct 2018

References

  1. Dixon, R.K.K., Solomon, A.M.M., Brown, S.A., Houghton, R.A.A., Wisniewski, J. 1994. Carbon Pools and Flux of Global Forest Ecosystems. Science, 263, 5144.10.1126/science.263.5144.185
  2. Dmuchowski, W., Kurczynska, E.U., Wloch, W. 1998. Chemical Composition of Needles and Cambial Activity of Stems of Scots Pine Trees. USDA Forest Service Gen.Tech.Rep. PSW-GTR-166, 197-204.
  3. Gahagan, A., Giardina, C.P., King, J.S., Binkley, D., Pregitzer, K.S., Burton, A.J. 2015. Carbon fluxes, storage, and harvest removals through 60years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA. Forest Ecology and Management, 337, 88-97.10.1016/j.foreco.2014.10.037
  4. He, H., Zhang, C., Zhao, X., Fousseni, F., Wang, J., Dai, H., Yang, S., Zuo, Q. 2018. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests Northeastern China. PLoS ONE, 13 (1), 1-16.10.1371/journal.pone.0186226
  5. Jagiełło, R., Beker, C. 2017. Simplified model of diameter distribution for even−aged unthinned Scots pine (Pinus sylvestris L.) stands (in Polish with English summary). Sylwan, 161 (10), 822−830.
  6. Jagodziński, A.M., Dyderski, M.K., Gęsikiewicz, K., Horodecki, P., Cysewska, A., Wierczyńska, S., Maciejczyk, K. 2018. How do tree stand parameters affect young Scots pine biomass? - Allometric equations and biomass conversion and expansion factors. Forest Ecology and Management, 409, 4-83.10.1016/j.foreco.2017.11.001
  7. Jagodziński, A.M., Kałucka, I., Horodecki, P., Oleksyn, J. 2014. Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap. Dendrobiology, 72, 139-150. http://dx.doi.org/10.12657/denbio.072.012.10.12657/denbio.072.012
  8. Liu, C.-J., Westman, C.J., Ilvesniemi, H. 2001. Matter and nutrient dynamics of pine (Pinus tabulaeformis) and oak (Quercus variabilis) litter in North China. Silva Fennica, 35 (1), 3-13.10.14214/sf.599
  9. Martin, J.G., Kloeppel, B.D., Schaefer, T.L., Kimbler, D.L., Steven, G., McNulty, S.G. 1998. Aboveground biomass and nitrogen allocation often deciduous southern Appalachian tree species. Canadian Journal of Forest Research, 28, 1648-1659.10.1139/x98-146
  10. Oleksyn, J., Reich, P.B., Chałupka, W., Tjoelker, M.G. 1999. Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12- year-old provenance experiment. Scandinavian Journal of Forest Research, 14, 7-17. http://dx.doi.org/10.080/02827589908540804.10.1080/02827589908540804
  11. Osipov, A.F. 2017. Reserves and flows of organic carbon in the ecosystem of a ripe pine bilberry blueberry taiga. Siberian Forest Journal, 2, 70-80.
  12. Parzych, A., Sobisz, Z. 2012. The macro- and microelemental content of Pinus sylvestris L. and Pinus nigra J.F. Arn. needles in Cladonio-Pinetum habitat of the Słowiński National Park (in Polish with English summary). Leśne Prace Badawcze, 73 (4), 295-303.10.2478/v10111-012-0028-y
  13. Skonieczna J., Małek S., Polowy K., Węgiel A. 2014. Element content of Scots pine (Pinus sylvestris L.) stands of different densities. Drewno, 57 (192), 77-87.10.12841/wood.1644-3985.S13.05
  14. Socha, J., Wężyk, P. 2004. Empirical formulae to assess the biomass of the above-ground part of pine trees. Electronic Journal of Polish Agricultural Universities, Forestry, 7. http://www.ejpau.media.pl/volume7/issue2/forestry/art-04.html.
  15. Son, Y., Gower S.T., 1991. Aboveground nitrogen and phosphorus use by five plantation-grown trees with different leaf longevities. Biogeochemistry, 14: 167-197.10.1007/BF00000806
  16. Usoltsev, V.A. 2016. Phytomass of model trees of forestforming rocks of Eurasia: data base, climatically conditioned geography, taxation standards: scientific edition (ed.: V.А. Usoltsev). The Ural State Forest Engineering University, Ekaterinburg, Russia.
  17. Usoltsev, V.A., Zalesov, V.A. 2005. Methods for determining biological productivity. The Ural State Forest Engineering University, Ekaterinburg, Russia.
  18. Verma, A., Mondal, P. 2017. Pyrolysis of pine needles: effects of process parameters on products yield and analysis of products. Journal of Thermal Analysis and Calorimetry. 10.1007/s10973-017-6727-0.10.1007/s10973-017-6727-0
  19. Zasada, M., Bronisz, K., Bijak, Sz., Wojtan, R., Tomusiak, R., Dudek, A., Michalak, K., Wróblewski, L. 2008. Empirical formulae for determination of the dry biomass of aboveground parts of the tree (in Polish with English summary). Sylwan, 152 (3), 27-39.
  20. Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs, 4, 63.10.14214/sf.sfm4
  21. Zhang, Q., Wang, C., Wang, X., Quan, X. 2009. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management, 258 (5), 722-727.10.1016/j.foreco.2009.05.009
DOI: https://doi.org/10.2478/ffp-2018-0013 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 137 - 142
Submitted on: Apr 12, 2018
|
Accepted on: Jun 1, 2018
|
Published on: Oct 27, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Assel R. Tumenbayeva, Dani N. Sarsekova, Stanisław Małek, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.