Have a personal or library account? Click to login
Identification of financial ratios applicable in the construction of a prediction model for bankruptcy of wood industry enterprises Cover

Identification of financial ratios applicable in the construction of a prediction model for bankruptcy of wood industry enterprises

Open Access
|May 2018

References

  1. Abumustafa, N.I. 2006. Development of an early warning model for currency crises in emerging economies: An empirical study among Middle Eastern countries. International Journal of Management, 23 (3), 403–411. http://search.proquest.com/openview/3c1199229c95d431c9308af57c319e2a/1?pqorigsite=gscholar
  2. Adamowicz, K. 2010. Price elasticity of demand for timber on primary local wood market in Poland. Sylwan, 154 (2), 130–138. http://sylwan.ibles.waw.pl/pls/apex/f?p=105:10:248927025306901::NO::P10_NAZWA_PLIKU,P10_ARTYKUL:F1164236155%2F2010_02_130au.pdf%2C2009018
  3. Adamowicz, K., Noga, T. 2014. Multivariate analysis of bankruptcy in companies in the wood sector. Sylwan, 1 58 (9), 6 43–650. http://sylwan.ibles.waw.pl/pls/apex/f?p=105:10:248927025306901::NO::P10_NAZWA_PLIKU,P10_ARTYKUL:F2046347597%2F2014_09_643au.pdf%2C2014003
  4. Adamowicz, K., Noga, T. 2017. Assessment applicability of selected models of multiple discriminant analyses to forecast financial situation of Polish wood sector enterprises. Folia Forestalia Polonica, Series A – Forestry, 59 (1), 59–67. https://depot.ceon.pl/bitstream/handle/123456789/11697/Journal_10340-Volume59_1-06article_ffp-59-6.pdf?sequence=1.10.1515/ffp-2017-0006
  5. Adamowicz, K., Szramka, H., Starosta-Grala, M., Szczypa, P. 2016. Export and import of timber in selected member states of the European Union. Sylwan, 160 (3), 179–186. http://sylwan.ibles.waw.pl/pls/apex/f?p=105:10:248927025306901::NO::P10_NAZWA_PLIKU,P10_ARTYKUL:swiezy_plik%2C2015093.
  6. Ahn, B.S., Cho, S.S., Kim, C.Y. 2000. The integrated methodology of rough set theory and artificial neural network for business failure prediction. Expert Systems with Applications, 18 (2), 65–74. DOI: 10,1016/S0957-4174(99)00053-6.10.1016/S0957-4174(99)00053-6
  7. Altman, E.I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, September, 589–609. DOI: 10.1111/j.1540-6261.1968.tb00843.x.10.1111/j.1540-6261.1968.tb00843.x
  8. Altman, E.I., Haldeman, G., Narayanan, P. 1977. Zeta analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, June, 29–54. DOI:10.1016/0378-4266(77)90017-6.10.1016/0378-4266(77)90017-6
  9. Argenti, J. 1976. Corporate Collapse: The Causes and Symptoms. Mc Graw-Hill, London.
  10. Balcaen, S., Ooghe, H. 2006. 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38 (1), 63–93. DOI: 10.1016/j.bar.2005.09.00110.1016/j.bar.2005.09.001
  11. Barniv, R., Hathorn, J. 1997. The merger or insolvency alternative in the insurance industry. Journal of Risk and Insurance, 64 (1), 89–113. DOI: 10.2307/253913.10.2307/253913
  12. Barniv, R., McDonald, J.B. 1992. Identifying financial distress in the insurance industry: A synthesis of methodological and empirical issues. Journal of Risk and Insurance, 59, 543–573. DOI: 10.2307/253344.10.2307/253344
  13. Beaver, W. 1966. Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. DOI: 10.2307/2490171.10.2307/2490171
  14. Becchetti, L., Sierra, J. 2003. Bankruptcy risk and productive efficiency in manufacturing firms. Journal of Banking & Finance, 27 (11), 2099–2120. DOI:10.1016/S0378-4266(02)00319-9.10.1016/S0378-4266(02)00319-9
  15. Berg, A., Borensztein, E., Pattillo, C. 2004. Assessing early warning systems: How have they worked in practice? IMF Working Paper, March 2004. Retrieved April 2009. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.494.2583&rep=rep1&type=pdf.
  16. Bilderbeek, J. 1978. Het voorspellen van falingen. Financiele kengetallen als thermometer voor de ondernemingsdoorlichting. Economisch en Sociaal Tijdschrift, 32 (1), 5–25.
  17. Branch, B. 2002. The costs of bankruptcy: A review. International Review of Financial Analysis, 11 (1), 39–57. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.5060&rep=rep1&type=pdf.10.1016/S1057-5219(01)00068-0
  18. Bredart, X. 2014. Financial distress and corporate governance: The impact of board configuration. International Business Research, 7 (3), 72–80. https://scholar.google.pl/scholar?q=Bredart%2C+X.+%282014%29.+Financial+distress+and+corporate+governance%3A+The+impact+of+board+configura-tion.+International+Business+Research%2C+7+%283%29%2C+72-80&btnG=&hl=pl&as_sdt=0%2C5.
  19. Bris, A., Welch, I., Zhu, N. 2006. The Costs of Bankruptcy: Chapter 7 liquidation versus chapter 11 reorganization. Journal of Finance, 61 (3), 1253–1303. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.4931&rep=rep1&type=pdf10.1111/j.1540-6261.2006.00872.x
  20. Brockett, P.L., Cooper, W.W. 1990. Report to the State Auditor and the State Board of Insurance on Early Warning Systems to Monitor the Performance of Insurance Companies in Texas. Office of the State Auditor, Austin, TX.
  21. Brockett, P.L., Golden, L.L., Jang, J., Yang, C. 2006. A comparison of neural network, statistical methods and variable. Journal of Risk and Insurance, 73 (3), 397–419. https://www.researchgate.net/profile/Patrick_Brockett/publication/23690716_A_Comparison_of_Neural_Network_Statistical_Methods_and_Variable_Choice_for_Life_Insurers’_Financial_Distress_Prediction/links/02e7e518c174b1972a000000.pdf10.1111/j.1539-6975.2006.00181.x
  22. Chen, I.J. 2014. Financial crisis and the dynamics of corporate governance: Evidence from Taiwan’s listed firms. International Review of Economics & Finance, 32, 3–28. DOI:10.1016/j.iref.2014.01.00410.1016/j.iref.2014.01.004
  23. Daubie, M., Meskens, N. 2002. Business failure prediction: a review and analysis of the literature. Working Paper, Department of Productions and Operations Management, Catholic University of Mons, Belgium, 1–15. http://link.springer.com/chapter/10.1007/978-3-642-57478-8_5#page-1
  24. Davis, E.P., Karim, D. 2008a. Comparing early warning systems for banking crises. Journal of Financial Stability, 4 (2), 89–120. DOI: 10.1016/j.jfs.2007.12.00410.1016/j.jfs.2007.12.004
  25. Davydenko, S.A., Strebulaev, I.A., Zhao, X. 2012. A market-based study of the cost of default. Review of Financial Studies, 25 (10), 2955–2999. http://rfs.oxfordjournals.org/content/25/10/295910.1093/rfs/hhs091
  26. Dąbrowski, B.J., Boratyńska, K. 2011. Using discriminant analysis models for insolvency predictions on a case of stock market index WIG-Spożywczy companies. Zeszyty Naukowe SGGW w Warszawie. Ekonomika i Organizacja Gospodarki Żywnościowej, 89, 163–173. http://www.wne.sggw.pl/czasopisma/pdf/EIOGZ_2011_nr89_s163.pdf10.22630/EIOGZ.2011.89.46
  27. Deakin, E.B. 1972. A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10 (1), 167–179. http://www.jstor.org/stable/2490225?seq=1#page_scan_tab_contents10.2307/2490225
  28. Divišová, P. 2013. The Use of Methods for Evaluation of Financial Health of Companies Operating in Chemical Industry. Crisis, 2 (3), 4. http://www.wseas.us/e-library/conferences/2013/Chania/AEBDa/AEBDa-41.pdf
  29. Doumpos, M., Zopoudinis, C. 1999. A multicriteria discrimination method for the prediction of financial distress: the case of Greece. Multinational Finance Journal, 3 (2), 71–101. http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/MJ~644~p16stg5a3c17bbkm51a4m1gmkc5e4.pdf10.17578/3-2-1
  30. Edison, H.J. 2003. Do indicators of financial crises work? An evaluation of an early warning system. International Journal of Finance and Economics, 8 (1), 11–53.10.1002/ijfe.197
  31. Elkamhi, R., Ericsson, J., Parsons, C.A. 2012. The cost and timing of financial distress. Journal of Financial Economics, 105 (1), 62–81. DOI: 10.1016/j.jfineco.2012.02.00510.1016/j.jfineco.2012.02.005
  32. El-Shazly, A. 2003. Early warning of currency crises: An econometric analysis for Egypt. The Middle East Business and Economic Review, 18 (1), 34–48. http://search.proquest.com/openview/d1aa55f64ab9b658bb9b99aec005b261/1?pq-origsite=gscholar
  33. Firlej, K., Bargieł, A., Szymański, M. 2014. The risk of failure of the food producing companies in Poland – on the example of companies listed on wig-food industry index. Folia Pomeranae Universitatis Technologiae Stetinensis, Oeconomica, 74 (1), 63–72. http://krzysztoffirlej.pl/nauka-i-organizacja/zagrozenie-upadloscia-przedsiebiorstw-przemyslu-spozywczego-w-polsce-na-przykladzie-spolek-z-indeksuwig-spozywczy/
  34. Godlewska, S. 2010. The Effectiveness of Polish Bankruptcy Prediction Models in Identifying the Insolvent Threat of Incorporated Enterprises. Annales Universitatis Mariae Curie-Skłodowska. Sectio H, Oeconomia, 44, 701–714. http://bazekon.icm.edu.pl/bazekon/element/bwmeta1.element.ekon-element-000171257421
  35. Gruszczyński, M. 2005. Strengths and Weaknesses of Bankruptcy Models. Materiały i Prace Instytutu Funkcjonowania Gospodarki Narodowej, 93, 185–187. http://bazekon.icm.edu.pl/bazekon/element/bwmeta1.element.ekon-element-000171282751
  36. Grzegorzewska, E. 2008. The bankruptcy of companies in Poland and other EU countries. Ekonomi ka i Organizacja Gospodarki Żywnościowej, 68, 51–63. http://www.wne.sggw.pl/czasopisma/pdf/EIOGZ_2008_nr68.pdf#page=4810.22630/EIOGZ.2008.68.80
  37. Hadasik, D. 1998. Upadłość przedsiębiorstw w Polsce i metody jej prognozowania. Zeszyty Naukowe. Seria 2, Prace Habilitacyjne / Akademia Ekonomiczna w Poznaniu, 153, 1–198. http://bazekon.icm.edu.pl/bazekon/element/bwmeta1.element.ekonelement-000072854733
  38. Hamrol, M., Czajka, B., Piechocki, M. 2004. Analiza dyskryminacyjna. Przegląd najważniejszych modeli. Przegląd Organizacji, 4, 34 -38. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ekon-element-000000120372?q=bwmeta1.element.ekon-element-f52cfc2e-6523-37ed-adb2-1738ca76a3f4;7&qt=CHILDREN-STATELESS
  39. Hill, N.T., Perry, S.E., Andes, S. 1996. Evaluating firms in financial distress: An event history analysis. Journal of Applied Business Research, 12 (3), 60–71. http://cluteinstitute.com/ojs/index.php/JABR/article/viewFile/5804/588610.19030/jabr.v12i3.5804
  40. Hołda, A. 2001. Prognozowanie bankructwa jednostki w warunkach gospodarki polskiej z wykorzystaniem funkcji dyskryminacyjnej ZH. Rachunkowość, 5, 306–310.
  41. Jagiełło R. 2013. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw. Materiały i Studia NBP, 286, 71–72.
  42. Katz, M. 2006. Multivariable analysis: A practical guide for clinicians. New York: Churchill-Livingstone.10.1017/CBO9780511811692
  43. Keasey, K., Watson, R. 1987. Non-financial symptoms and the prediction of small company failure: a test of Argenti’s hypotheses. Journal of Business Finance & Accounting, 14 (3), 335–354.10.1111/j.1468-5957.1987.tb00099.x
  44. Kisielińska, J., Waszkowski, A. 2010. The financial liquidity of agriculture farms situated in Lubelskie voivodeship. Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego, Ekonomika i Organizacja Gospodarki Żywnościowej, 82, 17–31. http://www.wne.sggw.pl/czasopisma/pdf/EIOGZ_2010_nr82.pdf#page=1710.22630/EIOGZ.2010.82.14
  45. Kocel J. 2010. Methodological foundations of financial and economic forecast for the State Forests National Forest Holding. Sylwan, 154 (1), 41−51. http://sylwan.ibles.waw.pl/pls/apex/f?p=105:10:0::NO::P10_NAZWA_PLIKU,P10_ARTYKUL:F546833311%2F2010_01_041au.pdf%2C2009025
  46. Koyuncugil, A.S., Ozgulbas, N. 2007. Developing financial early warning system via data mining. In: Proceedings Book of 4th Congress of SMEs and Productivity, Istanbul, 153–166.
  47. Koyuncugil, A.S., Ozgulbas, N. 2008. Early warning system for SMEs as a financial risk detector. In: Data mining applications for empowering knowledge societies (ed.: Hakikur Rahman), Idea Group Inc., New York, 221–240.10.4018/978-1-59904-657-0.ch012
  48. Koyuncugil, A.S., Ozgulbas, N. 2009a. Measuring and hedging operational risk by data mining. In: Proceedings Book of World Summit on Economic-Financial Crisis and International Business, Washington, 1–6.
  49. Koyuncugil, A.S., Ozgulbas, N. 2009b. An intelligent financial early warning system model based on data mining for SMEs. In: Proceedings of the International Conference on Future Computer and Communication, Kuala Lumpur, Malaysia, 662–666. DOI: 10.1109/ICFCC.2009.11810.1109/ICFCC.2009.118
  50. Koyuncugil, A.S., Ozgulbas, N. 2012. Financial early warning system model and data mining application for risk detection. Expert Systems with Applications, 39 (6), 6238–6253. DOI: 10.1016/j.eswa.2011.12.02110.1016/j.eswa.2011.12.021
  51. Kyong, J.O., Tae, Y.K, Chiho, K., Suk, J.L. 2006. Using neural networks to tune the fluctuation of daily financial condition indicator for financial crisis forecasting. Advances in Artificial Intelligence, 4304, 607–616. DOI: 10.1016/j.eswa.2011.12.02110.1016/j.eswa.2011.12.021
  52. Laitinen, E.K. 1992. Prediction of failure of a newly founded firm. Journal of Business, 7, 323–340. DOI: 10.1016/0883-9026(92)90005-C10.1016/0883-9026(92)90005-
  53. Laitinen, E.K., Chong, H.G. 1999. Early warning system for crisis in SMEs: Preliminary evidence from Finland and the UK. Journal of Small Business and Enterprise Development, 6 (1), 89–102. https://www.researchgate.net/profile/H_Gin_Chong/publication/242337131_Early-warning_system_for_crisis_in_SMEs_preliminary_evidence_from_Finland_and_the_UK/links/5520a0e10cf2a2d9e1434cbe.pdf10.1108/EUM0000000006665
  54. Lee, S.H., Urrutia, J.L. 1996. Analysis of insolvency prediction in the property liability insurance industry: A comparison of logit and hazard models. Journal of Risk and Insurance, 63, 121–130.10.2307/253520
  55. Lehmann, B. 2003. Is it worth the while? The relevance of qualitative information in credit rating, Working Paper presented at the EFMA 2003 Meetings, Helsinki, Finland, 25–29 June 2003, 1–25. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=410186
  56. Lestano, L., Jacobs, L.J. Kuper, G.H. 2004. Indicators of financial crises do work! An early warning system for six Asian countries. CCSO Working Paper 13. Department of Economics, University of Groningen, the Netherlands. http://econpapers.repec.org/paper/wpawuwpif/0409004.htm10.2139/ssrn.480021
  57. Li, S., Wang, S. 2014. A financial early warning logit model and its efficiency verification approach. Knowledge-Based Systems, 70, 78–87. DOI: 10.1016/j.knosys.2014.03.01710.1016/j.knosys.2014.03.017
  58. Liang, D., Lu, C.-C., Tsai, C.-F., Shih, G.-A. 2016. Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252 (2), 561–572. DOI: 10.1016/j.ejor.2016.01.01210.1016/j.ejor.2016.01.012
  59. Lin, W.-Y., Hu, Y.-H., Tsai, C.-F. 2012. Machine learning in financial crisis prediction: A survey IEEE Transactions on Systems, Man and Cybernetics – Part C: Applications and Reviews, 42 (4), 421–436. 10.1109/TSMCC.2011.217042010.1109/TSMCC.2011.2170420
  60. Lin, F.-Y., Liang, D., Chu, W.-S. 2010. The role of nonfinancial features related to corporate governance in business crisis prediction. Journal of Marine Science and Technology, 18 (4), 504–513. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.9163&rep=rep1&type=pdf10.51400/2709-6998.1901
  61. Lussier, R.N. 1995. A nonfinancial business success versus failure prediction model for young firms. Journal of Small Business Management, 33 (1), 8–20. http://search.proquest.com/openview/88a9dbbdad41d0e9af99d92b78fbb1d6/1?pqorigsite=gscholar
  62. Lussier, R.N., Corman, J. 1994. A success vs. failure prediction model of the manufacturing industry, Paper presented at the Conference of the Small Business Institute Director’s Association, San Antonio, Texas, February 1994, 48, 1–5.
  63. Maltz, A.C., Shenhar, A.J., Reilly, R.R. 2003. Beyond the balanced scorecard: refining the search for organizational success measures. Long Range Planning, 36, 187–204. DOI: 10.1016/S0024-6301(02)00165-610.1016/S0024-6301(02)00165-6
  64. Mączyńska, E. 1994. Ocena kondycji przedsiębiorstwa. Uproszczone metody. Życie Gospodarcze, 38, 42–45. http://bazekon.icm.edu.pl/bazekon/element/bwmeta1.element.ekon-element-000000100966
  65. Mączyńska, E., Zawadzki, M. 2006. Dyskryminacyjne modele predykcji upadłości przedsiębiorstw. Ekonomista, 2, 205–217. http://www.pte.pl/pliki/2/12/Ekonomista%2025%2002%2006ostfragment.pdf
  66. Mensah, Y.M. 1984. An examination of the stationarity of multivariate bankruptcy prediction models: a methodological study. Journal of Accounting Research, 22 (1), 380–395. https://www.researchgate.net/profile/Yaw_Mensah/publication/259673939_An_Examination_of_the_Stationarity_of_Multivariate_Bankruptcy_Prediction_Models_A_Methodological_Study/links/570b167908ae2eb9422004a7.pdf10.2307/2490719
  67. Nehrebecka, N., Dzik, A.M. 2012. Konstrukcja miernika szans na bankructwo firmy. Narodowy Bank Polski. Departament Edukacji i Wydawnictw. http://lodz.stat.gov.pl/gfx/lodz/userfiles/_public/pliki/inne/201311_d_konf_swr_nehrebecka.pdf
  68. Noga, T., Adamowicz, K., Jakubowski, J. 2014. Discriminating methods in the assessment of financial situation in timber industry enterprises. Acta Sci. Pol., Silv. Colendar. Rat. Ind. Lignar., 13 (1), 25–35. http://www.forestry.actapol.net/pub/3_1_2014.pdf
  69. Ohlson, J. 1980. Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18 (1), 109–131. DOI: 10.2307/249039510.2307/2490395
  70. Ooghe, H., Camerlynck, J., Balcaen, S. 2003. The Ooghe-Joos-De Vos failure prediction models: a cross-industry validation. Brussels Economic Review, 46 (1), 39–70.
  71. Ozgulbas, N., Koyuncugil, A.S. 2010. Financial early warning system for risk detection and prevention from financial crisis. In: Surveillance Technologies and Early Warning Systems: Data Mining Applications for Risk Detection (eds.: A.S. Koyuncugil, N. Ozgulbas). Idea Group Inc., New York, 76–108.10.4018/978-1-61692-865-0.ch005
  72. Pantalone, C., Platt, M. 1987. Predicting failures of savings and loan associations. Areuea Journal, 15, 46–64.10.1111/1540-6229.00418
  73. Platt, H., Platt, M. 2002. Predicting Corporate Financial Distress: Reflections on Choice-Based Sample Bias. Journal of Economics and Finance, 2. DOI: 10.1007/BF0275598510.1007/BF02755985
  74. Prusak, B. 2004. Metody wykorzystywane w analizie porównawczej modeli oceny zagrożenia przedsiębiorstw upadłością. Wydział Zarządzania i Ekonomiki Politechniki Gdańskiej, 1–5. http://www1.zie.pg.gda.pl/~pb/ap.pdf
  75. Prusak, B. 2012. Zalety i ograniczenia modeli prognozowania zagrożenia przedsiębiorstw upadłością. Wyd. Oficyna wydawnicza SGH, Warszawa.
  76. Salas, V., Saurina, J. 2002. Credit risk in two institutional regimes: Spanish commercial and savings banks. Journal of Financial Services Research, 22 (3), 203–224. DOI:10.1023/A:101978110967610.1023/A:1019781109676
  77. Sheppard, J.P. 1994. Strategy and bankruptcy: An exploration into organizational death. Journal of Management, 20 (4), 795–833. http://www.sfu.ca/~sheppard/papers/JPS94c_old.pdf10.1016/0149-2063(94)90031-0
  78. Slowinski, R., Zopounidis, C. 1995. Application of the Rough Set Approach to Evaluation of Bankruptcy Risk. Int. J. Intell. Syst. Acc. Fin. Mgmt., 4, 27–41. DOI: 10.1002/j.1099–1174.1995.tb00078.x10.1002/j.10991174.1995.tb00078.x
  79. Stanisz, A. 2007. Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny (3). Analizy wielowymiarowe. StatSoft Polska, Kraków.
  80. Taffler, R.J. 1984. Empirical models for the monitoring of UK corporations. Journal of Banking and Finance, 8, 199–227. DOI: 10.1016/0378-4266(84)90004-910.1016/0378-4266(84)90004-9
  81. Taffler, R.J., Tisshaw, H. 1977. Going, going, gone-four factors which factors which predict. Accountancy, March, 50–54.
  82. Trieschmann, J.S., Pinches, G.E. 1973. A multivariate model for predicting financially distressed property-liability insurers. Journal of Risk and Insurance, 40, 327–338. DOI:10.2307/25222210.2307/252222
  83. Tymoszczuk, M. 2013. Skuteczność modeli prognozowania upadłości przedsiębiorstw a upływ czasu-porównanie popularnych Polskich modeli wielowymiarowej analizy dyskryminacyjnej z modelem zbudowanym przez autorkę. In: Upadłości, bankructwa i naprawa przedsiębiorstw – Wybrane zagadnienia (eds.: A. Adamska., E. Mączyńska). SGH, 12, 193–194.
  84. Wardzińska, K. 2012. Przykład zastosowania analizy dyskryminacyjnej do oceny sytuacji finansowej przedsiębiorstw. Ekonomia i Zarządzanie, 4 (3), 197–208. http://zneiz.pb.edu.pl/data/magazine/article/118/3.4_wardzinska.pdf
  85. Wędzki, D. 2005. Wielowymiarowa analiza bankructwa na przykładzie budownictwa. Badania Operacyjne i Decyzyjne, 2, 59–81.
  86. Wierzba, D. 2000. Wczesne wykrywanie przedsiębiorstw zagrożonych upadłością na podstawie analizy wskaźników finansowych – teoria i badania empiryczne. Zeszyty Naukowe Wyższej Szkoły Ekonomiczno-Informatycznej w Warszawie, 9, 79–105.
  87. Wojnar, J. 2014. Ocena skuteczności modeli analizy dyskryminacyjnej do prognozowania zagrożenia finansowego spółek giełdowych. Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie, 1 (24), 221–231. http://zn.mwse.edu.pl/wojnar-jolanta-ocena-skutecznosci-modeli-analizydyskryminacyjnej-do-prognozowania-zagrozeniafinansowego-spolek-gieldowych/
  88. Wu, J.L. 2007. Do Corporate Governance Factors Matter for Financial Distress Prediction of Firms? Evidence from Taiwan (Doctoral dissertation, University of Nottingham).
  89. Xu, K., Zhao, Q., Bao, X. 2015. Study on early warning of enterprise financial distress – based on partial leastsquares logistic regression. Acta Oeconomica, 65, 3–16. DOI: http://dx.doi.org/10.1556/032.65.2015.S2.210.1556/032.65.2015.S2.2
  90. Yang, B., Ling, X.L., Hai, J., Jing, X. 2001. An early warning system for loan risk assessment using artificial neural networks. Knowledge Based Systems, 14 (5/6), 303–306. DOI: 10.1016/S0950-7051(01)00110-110.1016/S0950-7051(01)00110-1
  91. Zavgren, C. 1985. Assessing the vulnerability to failure of American industrial firms: A logistics analysis. Journal of Accounting Research, 22, 59–82. DOI: 10.1111/j.1468-5957.1985.tb00077.x10.1111/j.1468-5957.1985.tb00077.x
  92. Zmijewski, M.E. 1984. Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, Supplement, 59.10.2307/2490859
DOI: https://doi.org/10.2478/ffp-2018-0006 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 61 - 72
Submitted on: Jan 16, 2017
Accepted on: Feb 16, 2018
Published on: May 19, 2018
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Krzysztof Adamowicz, Tomasz Noga, published by Forest Research Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.