Have a personal or library account? Click to login
Improved methods of classification of multispectral aerial photographs: evaluation of floodplain forests in the inundation area of the Danube Cover

Improved methods of classification of multispectral aerial photographs: evaluation of floodplain forests in the inundation area of the Danube

By: Tomáš Bucha and  Martin Slávik  
Open Access
|Oct 2013

References

  1. Ahern F. 1988. The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. InternationalJournal of Remote Sensing, 63, 61- 72.
  2. Bijker W., Ardila J.P., Tolpekin V.A. 2012. Change detection and uncertainty in fuzzy tree crown objects in an urban environment. In: GEOBIA 2010 proceedings, 29 June-2 July 2010, Ghent, Belgium, IAPRS, ISPPRS, Vol. 38- 4/C7.
  3. Bucha t., Barka I., Bartko M. 2009. Zhodnotenie zdravotného stavu lužných lesov v inundacnej oblasti Dunaja v úseku Dobrohošt - Sap z leteckých snímok. Lesnícky časopis - Forestry Journal, 55 (2), 145- 164.
  4. Carter G.A. 1993. Responses of leaf spectral reflectance to plant stress. American Journal of Botany, 80, 239−243.
  5. Carter G.A. 1994. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. InternationalJournal of Remote Sensing, 15, 697−703.
  6. Carter G.A., Knapp A.K. 2001. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. AmericanJournal of Botany, 88 (4), 677- 684.
  7. Ciesla W.M. 2000. Remote Sensing in Forest Health Protection. USDA Forest Service, FHTET Report No. 00- 03.
  8. Congalton R.G., Green K. 1999. Assessing the accuracy of remotely sensed data: Principles and practices. Lewis Publisher, Boca Raton.10.1201/9781420048568
  9. Eigirdas M., Augustaitis A., Mozgeris G. 2013. Predicting tree crown defoliation using color-infrared orthophoto maps. iForest, 6, 23- 29.
  10. Gross C.P. 2000. Remote sensing application for forest health status assessment. 2nd edition, Commission of the European Communities.
  11. Hildebrandt G. 1991. Remote Sensing Application for Forest Health Status Assessment. Commission of the European Communities, Walphot S.A, 1991.
  12. Hirschmugl M., Ofner M., Raggam J., Schardt M. 2007. Single tree detection in very high resolution remote sensing data. Remote Sensing of Environment, 110 (4), 533- 544.
  13. Jackson R.D. 1983. Spectral Indices in n-Space. RemoteSensing of Environment, 13, 409- 421.
  14. Jing L., Hu B., Noland T., Li J. 2012. An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS Journal of Photogrammetryand Remote Sensing, 70, 88- 98.
  15. Klobučar D., Pernar R., Lončarič S., Subašič M., Seletkovič A., Ančič M. 2010. Detecting Forest Damage in Cir Aerial Photographs Using a Neural Network. Croatian Journal of Forest Engineering, 31, 157- 163.
  16. Masaitis G., Mozgeris G., Augustaitis A. 2013. Spectral reflectance properties of healthy and stressed coniferous trees. iForest, 6, 30- 36.
  17. Meddens A.J.H., Hicke J.A., Vierling L.A. 2011. Evaluating the potential of multispectral imagery to map multiple stages of tree mortality. Remote Sensing ofEnvironment, 115, 1632- 1642.
  18. Morgan J.L., Gergel S.E., Coops N.C. 2010. Aerial photography: A rapidly evolving tool for ecological management. Bioscience, 60, 47- 59.
  19. Olofsson K., Hagner O. 2006. Single tree detection in high resolution satellite images and digital aerial images using artificial neural network and geometric-optical model. Proceeding from international workshop 3D Remote Sensing in Forestry, 14- 15 February 2006, Vienna, Austria, 205- 209.
  20. Pitkänen J. 2001. Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods. CanadianJournal of Forest Research, 31, 832- 844.
  21. Pontius J., Martin M., Plourde L., Hallett R. 2008. Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies. Remote Sensing of Environment, 112, 2665- 2676.
  22. Pouliot D.A., King D.J., Bell F.W., Pitt D.G. 2002. Automated tree crown detection and delineation in highresolution digital camera imagery of coniferous forest regeneration. Remote Sensing of Environment, 82, 322- 334.
  23. Raši R., Bucha T. 2001. The evaluation of forest stands defoliation in the region of water construction system Gabčíkovo using aerial photos. Lesníckyčasopis - Forestry Journal, 47 (2), 165- 177.
  24. Sims D.A., Gamon J.A. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337−354.
  25. Slaton M.R., Hunt R.E. Jr, Smith W.K. 2001. Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany, 88 (2), 278- 284.
  26. Strasser T., Lang L., Pernkopf L., Paccagnel K. 2012. Object-based class modeling for assessing habitat quality in riparian forests. Proceedings of the 4th GEOBIA, 7- 9 May 2012, Rio de Janeiro, Brasil, 555- 560.
  27. Šmelko Š. 1990. Zisťovanie stavu lesa kombináciou odhadu a merania dendrometrických veličín. VPA, VŠLD Zvolen, 1990/6.
  28. Šumbera S., Židek V. 2002. Automated tree top identification using colour infrared aerial photograps of high spatial resolution. Ecology, 21 (3), 229- 238.
  29. Vogelmann J.E., Rock B.N., Moss D.M. 1993. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14, 1563−1575.
  30. Wang Y., Soh S.Y., Schultz H. 2006. Individual tree crown segmentation in aerial forestry images by mean shift clustering and graph-based cluster merging. Intrernational Journal of Computer Scienceand Network Security, 6 (11), 40- 45.
  31. Wolf B-M., Heipke Ch. 2007. Automatic extraction and delineation of single trees from remote sensing data. Machine Vision and Applications, 18 (5), 314- 330.
  32. Zarco-Tejada P.J., Miller J.R., Noland T.L., Mohammed G.H., Sampson P. 2001. Scalling-up and Model Inversion Methods with Narrow-band Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data. IEEE Transactionson Geoscience and Remote Sensing, 39 (7), 1491- 1507.
  33. UN/ECE ICP Forests. 2006. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests: Part II Visual Assessment of Crown Condition. UNECE, Geneva (www.icp-forests.org).
DOI: https://doi.org/10.2478/ffp-2013-0007 | Journal eISSN: 2199-5907 | Journal ISSN: 0071-6677
Language: English
Page range: 58 - 71
Published on: Oct 12, 2013
Published by: Forest Research Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Tomáš Bucha, Martin Slávik, published by Forest Research Institute
This work is licensed under the Creative Commons License.