References
- A Razia. S., Chamola, V., Hussain, Z., Albalwy, F., & Hussain, A, A novel end-to-end deep convolutional neural network based skin lesion classification framework, Expert Systems with Applications, 246. 2024, 1-19.
- Ali, R., Manikandan, A., & Xu, J, A Novel framework of Adaptive fuzzy-GLCM Segmentation and Fuzzy with Capsules Network (F-CapsNet) Classification, Neural Computing and Applications, 35, 2023, 22133–22149.
- Attallah, O, Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning, Computers in Biology and Medicine, 178, 108798, 2024.
- Bagheri, F., Tarokh, M. J., & Ziaratban, M, Skin lesion segmentation from dermoscopic images by using Mask R-CNN, Retina-Deeplab, and graph-based methods, Biomedical Signal Processing and Control, 67. 2021, 102533.
- Burada, S., Manjunathswamy, B. E., & Sunil Kumar, M, Early detection of melanoma skin cancer: A hybrid approach using fuzzy C-means clustering and differential evolution-based convolutional neural network, Measurement: Sensors, 33, 2024, 101168, 1-9.
- DermNet NZ. Dermnet. https://www.kaggle.com/datasets/shubhamgoel27/dermnet, 2024
- Fan, S. K. S., & Chen, W. Y., A generative-adversarial-network-based temporal raw trace data augmentation framework for fault detection in semiconductor manufacturing, Engineering Applications of Artificial Intelligence, 139(part B), 2025, 109624.
- Farooq, M. A., Khatoon, A., Varkarakis, V., & Corcoran, P., Advanced deep learning methodologies for skin cancer classification in prodromal stages, CEUR Workshop Proceedings, 2019, 2563.
- Gouda, W., Sama, N. U., Al-Waakid, G., Humayun, M., & Jhanjhi, N. Z., Detection of Skin Cancer Based on Skin Lesion Images Using Deep Learning, Healthcare (Switzerland), 10(7). 2022, 1183, 1-18.
- Gurunathan, A., & Krishnan, B., A Hybrid CNN-GLCM Classifier For Detection And Grade Classification of Brain Tumor, Brain Imaging and Behavior, 16(3). 2022, 1410–1427.
- Jeong, H. K., Park, C., Henao, R., & Kheterpal, M., Deep Learning in Dermatology: A Systematic Review of Current Approaches, Outcomes, and Limitations, JID Innovations, 3(1), 2023, 100150, 1-16.
- Kao, S. Y. Z., Ekwueme, D. U., Holman, D. M., Rim, S. H., Thomas, C. C., & Saraiya, M., Economic burden of skin cancer treatment in the USA: an analysis of the Medical Expenditure Panel Survey Data, 2012–2018, Cancer Causes and Control, 34(3), 2023, 205–212.
- Kumar, K. S., Suganthi, N., Muppidi, S., & Kumar, B. S., FSPBO-DQN: SeGAN based segmentation and Fractional Student Psychology Optimization enabled Deep Q Network for skin cancer detection in IoT applications, Artificial Intelligence in Medicine, 129, 2022, 102299.
- McHale, C. M., Osborne, G., Morello-Frosch, R., Salmon, A. G., Sandy, M. S., Solomon, G., Zhang, L., Smith, M. T., & Zeise, L., Assessing health risks from multiple environmental stressors: Moving from G × E to I × E, Mutation Research - Reviews in Mutation Research, 775, 2018, 11-20.
- Mohan, J., Sivasubramanian, A., V., S., & Ravi, V., Enhancing skin disease classification leveraging transformer-based deep learning architectures and explainable AI, Computers in Biology and Medicine, 190, 2025, 110007.
- Oztel, I., Yolcu Oztel, G., & Sahin, V. H., Deep Learning-Based Skin Diseases Classification using Smartphones, Advanced Intelligent Systems, 5(12), 2023, 2300211, 1-11.
- Ravi, V., Attention Cost-Sensitive Deep Learning-Based Approach for Skin Cancer Detection and Classification, Cancers, 14(23), 2022, 1-26.
- Rodrigues, D. de A., Ivo, R. F., Satapathy, S. C., Wang, S., Hemanth, J., & Filho, P. P. R., A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system, Pattern Recognition Letters, 136, 2020, 8–15.
- Saha, D. K., Joy, A. M., & Majumder, A., YoTransViT: A transformer and CNN method for predicting and classifying skin diseases using segmentation techniques, Informatics in Medicine Unlocked, 47, 101495, 2024, 1-15.
- Schmitges, F. W., Radovani, E., Najafabadi, H. S., Barazandeh, M., Campitelli, L. F., Yin, Y., Jolma, A., Zhong, G., Guo, H., Kanagalingam, T., Dai, W. F., Taipale, J., Emili, A., Greenblatt, J. F., Hughes, T. R., Zhou, X., Weeks, S. D., Ameloot, P., Callewaert, N., … Zammit, P. P. S. Melanoma: Risk factors, early detection, and treatment strategies-An updated review. Skeletal Muscle, 6(1), 2016.
- Serte, S., & Demirel, H., Gabor wavelet-based deep learning for skin lesion classification, Computers in Biology and Medicine, 113, 103423, 2019.
- Shukla M M et al., A hybrid CNN with transfer learning for skin cancer disease detection, Medical & Biological Engineering & Computing, 62(10), 2024, 3057–3071.
- Srinivasu, P. N., Sivasai, J. G., Ijaz, M. F., Bhoi, A. K., Kim, W., & Kang, J. J., Classification of skin disease using deep learning neural networks with mobilenet v2 and LSTM, Sensors, 21(8), 2021, 1-27.
- Tschandl, P., Rosendahl, C., & Kittler, H., Data descriptor: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions, Scientific Data, 5, 2018, 180161.
- Urban, K., Mehrmal, S., Uppal, P., Giesey, R. L., & Delost, G. R., The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990–2017, JAAD International, 2, 2021, 98-108.
- Varma, P. B. S., Paturu, S., Mishra, S., Rao, B. S., Kumar, P. M., & Krishna, N. V., SLDCNet: Skin lesion detection and classification using full resolution convolutional network-based deep learning CNN with transfer learning, Expert Systems, 39(9), 2022.
- Zareen, S. S., Sun, G., Kundi, M., Qadri, S. F., & Qadri, S., Enhancing Skin Cancer Diagnosis with Deep Learning: A Hybrid CNN-RNN Approach, Computers, Materials and Continua, 79(1), 2024, 1497–1519.
- Zenghong Wu, Fangnan Xia, R. L., Global burden of cancer and associated risk factors in 204 countries and territories, 1980-2021: a systematic analysis for the GBD 2021, J Hematol Oncol, 17(1: 119), 2024, 1-14.
- Zhang, B., Zhou, X., Luo, Y., Zhang, H., Yang, H., Ma, J., & Ma, L., Opportunities and Challenges: Classification of Skin Disease Based on Deep Learning, Chinese Journal of Mechanical Engineering (English Edition), 34(1), 2021.
- Zhang, J., Zhong, F., He, K., Ji, M., Li, S., & Li, C., Recent Advancements and Perspectives in the Diagnosis of Skin Diseases Using Machine Learning and Deep Learning: A Review, Diagnostics, 13(23), 2023, 1-30.