Have a personal or library account? Click to login
A Transparent AI-Driven Multiclass Decision Support System for Thyroid Risk Prediction Using Machine Learning and Deep Learning Approaches Cover

A Transparent AI-Driven Multiclass Decision Support System for Thyroid Risk Prediction Using Machine Learning and Deep Learning Approaches

By: Siouar Ouartani and  Nora Taleb  
Open Access
|Dec 2025

References

  1. Ahmad, W., Ahmad, A., Lu, C., A Novel Hybrid Decision Support System for Thyroid Disease Forecasting, Soft Computing, 22, 2018, 5377–5383.
  2. Aldughayfiq, B., Ashfaq, F., Jhanjhi, N. Z., Humayun, M., Explainable AI for Retinoblastoma Diagnosis: Interpreting Deep Learning Models with LIME and SHAP, Diagnostics, 13, 2023, 1932, https://doi.org/10.3390/diagnostics13111932.
  3. Allgaier, J., Mulansky, L., Draelos, R. L., Pryss, R., How Does the Model Make Predictions? A Systematic Literature Review on the Explainability Power of Machine Learning in Healthcare, Artificial Intelligence in Medicine, 143, 2023, 102616, https://doi.org/10.1016/j.artmed.2023.102616.
  4. Amin, A., Hasan, K., Zein-Sabatto, S., Chimba, D., Ahmed, I., Islam, T., An Explainable AI Framework for Artificial Intelligence of Medical Things, Proc. IEEE Globecom Workshops (GC Wkshps), 2023, 2097–2102.
  5. Chaganti, R., Rustam, F., De La Torre Díez, I., V. Mazon, J. L., Rodríguez, C. L., Ashraf, I., Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques, Cancers, 14, 2022.
  6. du Prel, J. B., Hommel, G., Röhrig, B., Blettner, M., Confidence Interval or P-Value? Part 4 of a Series on Evaluation of Scientific Publications, Deutsches Ärzteblatt International, 2009, https://doi.org/10.3238/arztebl.2009.0335.
  7. Ghosh, S. K., Khandoker, A. H., Investigation on Explainable Machine Learning Models to Predict Chronic Kidney Diseases, Scientific Reports, 14, 2024, 3687.
  8. Guler, H., Avcı, D., Ula¸s, M., Omma, T., Performance Comparison of Machine Learning Models Powered by SHAP and LIME Based Explainability Techniques on Diabetes Dataset, SSRN, 2024, https://ssrn.com/abstract=4713039.
  9. Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini, F., Factual and Counterfactual Explanations for Black Box Decision Making, IEEE Intelligent Systems, 34, 6, 2019, 14–23.
  10. Hakkoum, H., Idri, A., Abnane, I., Assessing and Comparing Interpretability Techniques for Artificial Neural Networks in Breast Cancer Classification, Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2021, https://doi.org/10.1080/21681163.2021.1901784.
  11. Hu, Y., Sokolova, M., Explainable Multi-class Classification of the CAMH COVID-19 Mental Health Data, arXiv preprint, 2021, arXiv:2113.13430.
  12. Junkang, A., Zhang, Y., Joe, I., Specific-Input LIME Explanations for Tabular Data Based on Deep Learning Models, Applied Sciences, 13, 15, 2023, 8782.
  13. Kaggle, Thyroid Disease Dataset, https://www.kaggle.com/datasets/emmanuelfwerr/thyroid-diseasedata.
  14. Mulwa, M. M., Mwangi, R. W., Mindila, A., GMM-LIME Explainable Machine Learning Model for Interpreting Sensor-Based Human Gait, Engineering Reports, 2024.
  15. Ouartani, S., Taleb, N., Decision Support System for Thyroid Disease Prediction Using Decision Tree Algorithm and Ontology, Artificial Intelligence Theory and Applications (AITA), 2024.
  16. Rahman, M., Ali, M., Mahim, M., Miah, S. M., Sipon, M., Enhancing Lung Abnormalities Detection and Classification Using a Deep CNN and GRU with Explainable AI, Machine Learning with Applications, 14, 2023, 100492, https://doi.org/10.1016/j.mlwa.2023.100492.
  17. Rawte, V., Royl, B., V. L., Thyroid Disease Diagnosis using Ontology-based Expert System, International Journal of Engineering Research Technology (IJERT), 4, 6, 2015.
  18. Settouti, N., Saidi, M., Preliminary Analysis of Explainable Machine Learning Methods for Multiple Myeloma Chemotherapy Treatment Recognition, Evolutionary Intelligence, 17, 2024, 513–533.
  19. Shiuh, T. L., Khai, W. K., Xin, Y. C., Wai, C. Y., Prediction of Thyroid Disease Using Machine Learning Approaches and Featurewiz Selection, JTEC, 15, 3, 2023, 9–16.
  20. Siddhartha, K., Abhishek, A., Gyanendra, S., Developing an Explainable Machine Learning-Based Thyroid Disease Prediction Model, International Journal of Business Analytics (IJBAN), 9, 3, 2022, 1–18.
  21. Sun, Q., Akman, A., Schuller, B. W., Explainable Artificial Intelligence for Medical Applications: A Review, arXiv preprint, 2024, arXiv:2412.01829.
  22. Tang, J., Alelyani, S., Liu, H., Feature Selection for Classification: A Review, in: C. C. Aggarwal (Ed.), Data Classification: Algorithms and Applications, Chapman and Hall/CRC, 2014, 37–64.
  23. Zacharias, J., von Zahn, M., Chen, J., Designing a Feature Selection Method Based on Explainable Artificial Intelligence, Electronic Markets, 2022, https://doi.org/10.1007/s12525-022-00608-1.
DOI: https://doi.org/10.2478/fcds-2025-0019 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 473 - 509
Submitted on: Sep 4, 2024
Accepted on: Jun 1, 2025
Published on: Dec 8, 2025
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Siouar Ouartani, Nora Taleb, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.