References
- Agresti, A. (2002), Categorical Data Analysis, Wiley Series in Probability and Statistics, New York.
- Arjovsky, M., Chintala, S., Bottou, L. (2017), Wasserstein Generative Adversarial Networks, in Proceedings of the 34th International Conference on Machine Learning (ICML), 70, pp. 214-223.
- Armanious K., Jiang C., Fischer M., Küstner T., Hepp T., Nikolaou K., Gatidis S., Yang B., (2020), MedGAN: Medical Image Translation using GANs for MRI Harmonization and Beyond, Neural Networks.
- Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y. (2017), Generalization and Equilibrium in Generative Adversarial Nets (GANs), in Proceedings of the 34th International Conference on Machine Learning (ICML), 70, pp. 224-232.
- Beran, R. (1977), Minimum Hellinger Distance Estimates for Parametric Models, The Annals of Statistics, pp. 445-463.
- Chung, J. K., Kannappan, P., Ng, C. T., Sahoo, P. K. (1989), Measures of the Distance Between Probability Distributions, Journal of Mathematical Analysis and Applications, pp. 280-292.
- Csiszar, I. (1967), Information-Type Measures of Difference of Probability Distributions and Indirect Observations, Studia Scientiarum Mathematicarum Hungarica, 2, pp. 299-318.
- Dziugaite, G. K., Roy, D. M., Ghahramani, Z. (2015), Training Generative Neural Networks via Maximum Mean Discrepancy Optimization, in Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, pp. 258-267.
- Goldberg, P. W., Jerrum, M. R. (1995), Bounding the Vapnik-Chervonenkis Dimension of Concept Classes Parameterized by Real Numbers, in Proceedings of the 6th Annual Conference on Computational Learning Theory, pp. 361-369.
- Goodfellow, I., Abadie, J. P., Mirza, M., Xu, B., Farley, D. W., Ozair, S., Courville, A., Bengio, Y. (2014), Generative Adversarial Nets, Advances in Neural Information Processing Systems (NIPS), 27, pp. 2672-2680.
- Hasan, M., Sang, H. (2023), Error Analysis of Generative Adversarial Network, arXiv preprint arXiv:2310.15387.
- Huang, J., Jiao, Y., Li, Z., Liu, S., Wang, Y., Yang, Y. (2022), An Error Analysis of Generative Adversarial Networks for Learning Distributions, Journal of Machine Learning Research (JMLR), pp. 5047-5089.
- Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2017), Image-to-Image Translation with Conditional Adversarial Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Ji, K., Zhou, Y., Liang, Y. (2021), Understanding Estimation and Generalization Error of Generative Adversarial Networks, IEEE Transactions on Information Theory, 67, pp. 3114-3129.
- Karras, T., Aila, T., Laine, S., Lehtinen, J. (2018), Progressive Growing of GANs for Improved Quality, Stability, and Variation, Proceedings of the International Conference on Learning Representations (ICLR).
- Karras, T., Laine, S., Aila, T. (2019), A Style-Based Generator Architecture for Generative Adversarial Networks, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T. (2020), Analyzing and Improving the Image Quality of StyleGAN, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- Karras, T., Aittala, M., Laine, S., Herva, E., Aila, T. (2021), Alias-Free Generative Adversarial Networks (StyleGAN3), Advances in Neural Information Processing Systems (NeurIPS).
- Li, Y., Swersky, K., Zemel, R. (2015), Generative Moment Matching Networks, in Proceedings of the 32nd International Conference on Machine Learning (ICML), 37, pp. 1718-1727.
- Liang, T. (2017), How Well Can Generative Adversarial Networks (GAN) Learn Densities: A Nonparametric View, arXiv preprint arXiv:1712.08244.
- Liang, T. (2021), How Well Generative Adversarial Networks Learn Distributions, Journal of Machine Learning Research (JMLR), 22, 1-41.
- MacKay, D. J. (2003), Information Theory, Inference, and Learning Algorithms, Cambridge University Press.
- Mirza, M., Osindero, S. (2014), Conditional Generative Adversarial Nets, arXiv preprint arXiv:1411.1784.
- Nowozin, S., Cseke, B., Tomioka, R. (2016), f-GAN: Training Generative Neural Samplers Using Variational Divergence Minimization, Advances in Neural Information Processing Systems (NIPS), 29, 271-279.
- Oberman, A. M., Calder, J. (2018), Lipschitz Regularized Deep Neural Networks Converge and Generalize, arXiv preprint arXiv:1808.09540.
- Radford, A., Metz, L., Chintala, S. (2016), Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, Proceedings of the International Conference on Learning Representations (ICLR).
- Renyi, A. (1961), On Measures of Entropy and Information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability.
- Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H. (2016), Generative Adversarial Text-to-Image Synthesis, Proceedings of the 33rd International Conference on Machine Learning (ICML), 48, pp. 1060-1069.
- Trefethen, L. (2019), Approximation Theory and Approximation Practice, SIAM.
- Vershynin, R. (2018), High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge University Press.
- Vidyasagar, M. (2003), Vapnik-Chervonenkis Pseudo and Fat-Shattering Dimensions, Communications and Control Engineering, Springer.
- Xue, Y., Xu, T., Zhang, H., Long, L. (2018), SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation, Neuroinformatics.
- Yi, X., Walia, E., Babyn, P. S. (2019), Generative Adversarial Network in Medical Imaging: A Review, Medical Image Analysis, 58, 101552.
- Zhang, P., Liu, Q., Zhou, D., Xu, T., He, X. (2018), On the Discrimination-Generalization Trade-Off in GANs, Proceedings of the 6th International Conference on Learning Representations (ICLR).
- Zhu, J. Y., Park, T., Isola, P., Efros, A. A. (2017), Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2242-2251.