Have a personal or library account? Click to login
f-divergence Analysis of Generative Adversarial Network Cover
By: Mahmud Hasan and  Hailin Sang  
Open Access
|Dec 2025

References

  1. Agresti, A. (2002), Categorical Data Analysis, Wiley Series in Probability and Statistics, New York.
  2. Arjovsky, M., Chintala, S., Bottou, L. (2017), Wasserstein Generative Adversarial Networks, in Proceedings of the 34th International Conference on Machine Learning (ICML), 70, pp. 214-223.
  3. Armanious K., Jiang C., Fischer M., Küstner T., Hepp T., Nikolaou K., Gatidis S., Yang B., (2020), MedGAN: Medical Image Translation using GANs for MRI Harmonization and Beyond, Neural Networks.
  4. Arora, S., Ge, R., Liang, Y., Ma, T., Zhang, Y. (2017), Generalization and Equilibrium in Generative Adversarial Nets (GANs), in Proceedings of the 34th International Conference on Machine Learning (ICML), 70, pp. 224-232.
  5. Beran, R. (1977), Minimum Hellinger Distance Estimates for Parametric Models, The Annals of Statistics, pp. 445-463.
  6. Chung, J. K., Kannappan, P., Ng, C. T., Sahoo, P. K. (1989), Measures of the Distance Between Probability Distributions, Journal of Mathematical Analysis and Applications, pp. 280-292.
  7. Csiszar, I. (1967), Information-Type Measures of Difference of Probability Distributions and Indirect Observations, Studia Scientiarum Mathematicarum Hungarica, 2, pp. 299-318.
  8. Dziugaite, G. K., Roy, D. M., Ghahramani, Z. (2015), Training Generative Neural Networks via Maximum Mean Discrepancy Optimization, in Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, pp. 258-267.
  9. Goldberg, P. W., Jerrum, M. R. (1995), Bounding the Vapnik-Chervonenkis Dimension of Concept Classes Parameterized by Real Numbers, in Proceedings of the 6th Annual Conference on Computational Learning Theory, pp. 361-369.
  10. Goodfellow, I., Abadie, J. P., Mirza, M., Xu, B., Farley, D. W., Ozair, S., Courville, A., Bengio, Y. (2014), Generative Adversarial Nets, Advances in Neural Information Processing Systems (NIPS), 27, pp. 2672-2680.
  11. Hasan, M., Sang, H. (2023), Error Analysis of Generative Adversarial Network, arXiv preprint arXiv:2310.15387.
  12. Huang, J., Jiao, Y., Li, Z., Liu, S., Wang, Y., Yang, Y. (2022), An Error Analysis of Generative Adversarial Networks for Learning Distributions, Journal of Machine Learning Research (JMLR), pp. 5047-5089.
  13. Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2017), Image-to-Image Translation with Conditional Adversarial Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  14. Ji, K., Zhou, Y., Liang, Y. (2021), Understanding Estimation and Generalization Error of Generative Adversarial Networks, IEEE Transactions on Information Theory, 67, pp. 3114-3129.
  15. Karras, T., Aila, T., Laine, S., Lehtinen, J. (2018), Progressive Growing of GANs for Improved Quality, Stability, and Variation, Proceedings of the International Conference on Learning Representations (ICLR).
  16. Karras, T., Laine, S., Aila, T. (2019), A Style-Based Generator Architecture for Generative Adversarial Networks, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
  17. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T. (2020), Analyzing and Improving the Image Quality of StyleGAN, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
  18. Karras, T., Aittala, M., Laine, S., Herva, E., Aila, T. (2021), Alias-Free Generative Adversarial Networks (StyleGAN3), Advances in Neural Information Processing Systems (NeurIPS).
  19. Li, Y., Swersky, K., Zemel, R. (2015), Generative Moment Matching Networks, in Proceedings of the 32nd International Conference on Machine Learning (ICML), 37, pp. 1718-1727.
  20. Liang, T. (2017), How Well Can Generative Adversarial Networks (GAN) Learn Densities: A Nonparametric View, arXiv preprint arXiv:1712.08244.
  21. Liang, T. (2021), How Well Generative Adversarial Networks Learn Distributions, Journal of Machine Learning Research (JMLR), 22, 1-41.
  22. MacKay, D. J. (2003), Information Theory, Inference, and Learning Algorithms, Cambridge University Press.
  23. Mirza, M., Osindero, S. (2014), Conditional Generative Adversarial Nets, arXiv preprint arXiv:1411.1784.
  24. Nowozin, S., Cseke, B., Tomioka, R. (2016), f-GAN: Training Generative Neural Samplers Using Variational Divergence Minimization, Advances in Neural Information Processing Systems (NIPS), 29, 271-279.
  25. Oberman, A. M., Calder, J. (2018), Lipschitz Regularized Deep Neural Networks Converge and Generalize, arXiv preprint arXiv:1808.09540.
  26. Radford, A., Metz, L., Chintala, S. (2016), Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, Proceedings of the International Conference on Learning Representations (ICLR).
  27. Renyi, A. (1961), On Measures of Entropy and Information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability.
  28. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H. (2016), Generative Adversarial Text-to-Image Synthesis, Proceedings of the 33rd International Conference on Machine Learning (ICML), 48, pp. 1060-1069.
  29. Trefethen, L. (2019), Approximation Theory and Approximation Practice, SIAM.
  30. Vershynin, R. (2018), High-Dimensional Probability: An Introduction with Applications in Data Science, Cambridge University Press.
  31. Vidyasagar, M. (2003), Vapnik-Chervonenkis Pseudo and Fat-Shattering Dimensions, Communications and Control Engineering, Springer.
  32. Xue, Y., Xu, T., Zhang, H., Long, L. (2018), SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation, Neuroinformatics.
  33. Yi, X., Walia, E., Babyn, P. S. (2019), Generative Adversarial Network in Medical Imaging: A Review, Medical Image Analysis, 58, 101552.
  34. Zhang, P., Liu, Q., Zhou, D., Xu, T., He, X. (2018), On the Discrimination-Generalization Trade-Off in GANs, Proceedings of the 6th International Conference on Learning Representations (ICLR).
  35. Zhu, J. Y., Park, T., Isola, P., Efros, A. A. (2017), Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2242-2251.
DOI: https://doi.org/10.2478/fcds-2025-0018 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 451 - 472
Submitted on: May 19, 2025
Accepted on: Oct 16, 2025
Published on: Dec 8, 2025
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mahmud Hasan, Hailin Sang, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.