Have a personal or library account? Click to login
Leveraging Artificial Intelligence for Cyanobacterial Bloom Prediction: A Hybrid Deep Learning and Generative Adversarial Network Framework for Accurate Forecasting and Proactive Management Cover

Leveraging Artificial Intelligence for Cyanobacterial Bloom Prediction: A Hybrid Deep Learning and Generative Adversarial Network Framework for Accurate Forecasting and Proactive Management

Open Access
|Dec 2025

References

  1. Amara, N. D., Dendani, N., Berrezzek, A., Khemissa, H., Saoudi, A., and Azizi, N., GAN-Enhanced Deep Learning Approach for Forecasting the Potentially Toxic Cyanobacteria in Dams, in: Bennour, A., Bouridane, A., Almaadeed, S., Bouaziz, B., Edirisinghe, E. (eds), Intelligent Systems and Pattern Recognition. ISPR’2024. Communications in Computer and Information Science, vol. 2304, Springer, Cham, 2025, 42-52.
  2. Awad, M. and Khanna, R., Efficient Learning Machines, Apress, 2015, 67-71.
  3. Berrezzek, A., Dendani, N., Amara, N. D., Azizi, N., and Saoudi, A., Ensemble Methods for Predicting Cyanobacteria’s Potential Toxicity in Water Dams, in: Bennour, A., Bouridane, A., Almaadeed, S., Bouaziz, B., Edirisinghe, E. (eds), Intelligent Systems and Pattern Recognition. ISPR’2024. Communications in Computer and Information Science, vol. 2305, Springer, Cham, 2025, 161-174
  4. Boukhamla, A., Bouziane, M. H., Laib, A., Azizi, N., Rouabhi, R., Merah, A., and Chaib, R., GANs Investigation for Multimodal Medical Data Interpretation: Basic Architectures and Overview, in: International Conference on Control, Automation and Diagnosis (ICCAD’2023), IEEE, 2023, 01-06.
  5. Busari, I., Sahoo, D., and Jana, R.,Prediction of Chlorophyll-a as an Indicator of Harmful Algal Blooms Using Deep Learning with Bayesian Approximation for Uncertainty Assessment, Journal of Hydrology, vol. 630, 2024.
  6. Christopher, M. H., Jingjing, X., Hao, W., Mark, A. L., Ron, W. Z., Charlie, J. G. L., Rolf, D. V., and Pouria, R., Predicting Imminent Cyanobacterial Blooms in Lakes Using Incomplete Timely Data, Water Resources Research, vol. 60, p. 1, 2024.
  7. David, F. M., Gary, R. W., Gary, L. F., Hunter, J. C., Ehsan, A., William, A. Y. I., Michael, J. S., and Robert, A. S., Using Artificial Intelligence for CyanoHAB Niche Modeling: Discovery and Visualization of Microcystis-Environmental Associations within Western Lake Erie, Canadian Journal of Fisheries and Aquatic Sciences, vol. 71, p. 1, 2014.
  8. Felipe, N. B., Claudio, C. B., Vitor, S. M., Evlyn, M. N., Rejane, S. P., Daniel, A. M., Thainara, M. L., Ryan, E. O., Nima, P., and Marta, C. L., Machine Learning for Cyanobacteria Mapping on Tropical Urban Reservoirs Using PRISMA Hyperspectral Data, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 204, p. 1, 2023.
  9. Haiping, A., Kai, Z., Jiachun, S., and Huichun, Z., Short-term Lake Erie Algal Bloom Prediction by Classification and Regression Models, Water Research, vol. 232, 2023.
  10. Hongye, C., Ling, H., and Liangzhi, L., A Deep Learning Method for Cyanobacterial Harmful Algae Blooms Prediction in Taihu Lake, China, Harmful Algae, vol. 113, p. 1, 2022.
  11. Hyo, G. K., Kyung, H. C., and Friedrich, R., Time-Series Modelling of HarmfulCyanobacteria Blooms by Convolutional Neural Networks and Wavelet Generated Time-Frequency Images of Environmental Driving Variables, Water Research, vol. 246, p. 1, 2023.
  12. Jie, N., Yanqun, L., Mengyu, X., Linjian, O., Lei, C., Han, Q., and Songhui, L., Prediction of Aureococcus anophageffens Using Machine Learning and Deep Learning, Marine Pollution Bulletin, vol. 200, p. 1, 2024.
  13. Jung, M. A., Jungwook, K., Hongtae, K., and Kyunghyun, K., Harmful Cyanobacterial Blooms Forecasting Based on Improved CNN-Transformer and Temporal Fusion Transformer, Environmental Technology & Innovation, vol. 32, pp. 1-9, 2023.
  14. Kambezidis, H., Comprehensive Renewable Energy, Elsevier, 2012.
  15. Khan, A. Q., Awan, H. A., Rasul, M., Siddiqi, Z. A., and Pimanmas, A., Optimized Artificial Neural Network Model for Accurate Prediction of Compressive Strength of Normal and High Strength Concrete, Cleaner Materials, vol. 10, pp. 2-6, 2023.
  16. Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. E., Data Preprocessing for Supervised Learning, International Journal of Computer Science, vol. 1, no. 1, p. 111, 2006.
  17. Lecun, Y., Bengio, Y., and Hinton, G., Deep Learning, Nature, vol. 521, no. 7553, 436-444, 2015.
  18. Lee, S. and Lee, D., Improved Prediction of Harmful Algal Blooms in Four Major South Korea’s Rivers using Deep Learning Models, International Journal of Environmental Research and Public Health, vol. 15, 2018.
  19. Mellios, N., Moe, S. J., and Laspidou, C., Machine Learning Approaches for Predicting Health Risk of Cyanobacterial Blooms in Northern European Lakes, Water, vol. 12, no. 1191, p. 1, 2020.
  20. Nowicka-Krawczyk, P., Żelazna-Wieczorek, J., Skrobek, I., Ziułkiewicz, M., Adamski, M., Kaminski, A., and Żmudzki, P., Persistent Cyanobacteria Blooms in Artificial Water Bodies: An Effect of Environmental Conditions or the Result of Anthropogenic Change, International Journal of Environmental Research and Public Health, vol. 19, no. 6990, p. 2, 2022.
  21. Park, Y., Lee, H. K., Shin, J.-K., Chon, K., Kim, S., Cho, K. H., Kim, J. H., and Baek, S.-S., A Machine Learning Approach for Early Warning of Cyanobacterial Bloom Outbreaks in a Freshwater Reservoir, Journal of Environmental Management, vol. 288, p. 1, 2021.
  22. Saoudi, A., Cyanobacteria and Cyanotoxins in the Water of the Mexa Dam (El-Tarf), Dept. Biochemistry. Ecobiology of Marine and Coastal Environments Laboratory, ANNABA, 2015-2016.
  23. Saoudi, A., Choukri, B., Luc, B., Rachid, O., and Mourad, B., Environmental Parameters and Spatio-Temporal Dynamics of Cyanobacteria in the Reservoir of Mexa (Extreme North-East of Algeria), Advances in Environmental Biology, vol. 9, no. 11, p. 109, 2015.
  24. Singh, V. K., Upsampling Interpolation of Discrete Signals, divilabs, 10 July 2014. [Online]. Available: https://www.divilabs.com/2014/07/upsampling-interpolation-of-discrete.html. [Accessed 04 June 2024].
  25. Smith, G., Essential Statistics, Regression, and Econometrics, Elsevier Inc, 2012.
  26. Thu-Hien, T. and Nhat-Duc, H., Predicting Colonization Growth of Algae on Mortar Surface with Artificial Neural Network, Journal of Computing in Civil Engineering, vol. 30, p. 1, 2016.
  27. Xu, Y., Zhang, D., Lin, J., Peng, Q., Lei, X., Jin, T., Wang, J., and Yuan, R., Prediction of Phytoplankton Biomass and Identification of Key Influencing Factors Using Interpretable Machine Learning Models, Ecological Indicators, vol. 158, 1-6, 2024.
  28. Zanchett, G. and Oliveira-Filho, E. C., Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects, Toxins, vol. 5, no. 10, p. 2, 2013.
  29. Zemmal, N., Benzebouchi, N., Azizi, N., et al., Unbalanced Learning for Early Automatic Diagnosis of Diabetes Based on Enhanced Resampling Technique and Stacking Classifier, International Journal of Intelligent Information Technologies (IJIIT), vol. 18(1)., p. 29, 2022.
DOI: https://doi.org/10.2478/fcds-2025-0017 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 427 - 450
Submitted on: Feb 25, 2025
Accepted on: Nov 5, 2025
Published on: Dec 8, 2025
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Nadjette Dendani, Amel Saoudi, Nour Djihane Amara, Nabiha Azizi, Julie Dugdale, Rayenne Hadiby, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.