References
- Amara, N. D., Dendani, N., Berrezzek, A., Khemissa, H., Saoudi, A., and Azizi, N., GAN-Enhanced Deep Learning Approach for Forecasting the Potentially Toxic Cyanobacteria in Dams, in: Bennour, A., Bouridane, A., Almaadeed, S., Bouaziz, B., Edirisinghe, E. (eds), Intelligent Systems and Pattern Recognition. ISPR’2024. Communications in Computer and Information Science, vol. 2304, Springer, Cham, 2025, 42-52.
- Awad, M. and Khanna, R., Efficient Learning Machines, Apress, 2015, 67-71.
- Berrezzek, A., Dendani, N., Amara, N. D., Azizi, N., and Saoudi, A., Ensemble Methods for Predicting Cyanobacteria’s Potential Toxicity in Water Dams, in: Bennour, A., Bouridane, A., Almaadeed, S., Bouaziz, B., Edirisinghe, E. (eds), Intelligent Systems and Pattern Recognition. ISPR’2024. Communications in Computer and Information Science, vol. 2305, Springer, Cham, 2025, 161-174
- Boukhamla, A., Bouziane, M. H., Laib, A., Azizi, N., Rouabhi, R., Merah, A., and Chaib, R., GANs Investigation for Multimodal Medical Data Interpretation: Basic Architectures and Overview, in: International Conference on Control, Automation and Diagnosis (ICCAD’2023), IEEE, 2023, 01-06.
- Busari, I., Sahoo, D., and Jana, R.,Prediction of Chlorophyll-a as an Indicator of Harmful Algal Blooms Using Deep Learning with Bayesian Approximation for Uncertainty Assessment, Journal of Hydrology, vol. 630, 2024.
- Christopher, M. H., Jingjing, X., Hao, W., Mark, A. L., Ron, W. Z., Charlie, J. G. L., Rolf, D. V., and Pouria, R., Predicting Imminent Cyanobacterial Blooms in Lakes Using Incomplete Timely Data, Water Resources Research, vol. 60, p. 1, 2024.
- David, F. M., Gary, R. W., Gary, L. F., Hunter, J. C., Ehsan, A., William, A. Y. I., Michael, J. S., and Robert, A. S., Using Artificial Intelligence for CyanoHAB Niche Modeling: Discovery and Visualization of Microcystis-Environmental Associations within Western Lake Erie, Canadian Journal of Fisheries and Aquatic Sciences, vol. 71, p. 1, 2014.
- Felipe, N. B., Claudio, C. B., Vitor, S. M., Evlyn, M. N., Rejane, S. P., Daniel, A. M., Thainara, M. L., Ryan, E. O., Nima, P., and Marta, C. L., Machine Learning for Cyanobacteria Mapping on Tropical Urban Reservoirs Using PRISMA Hyperspectral Data, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 204, p. 1, 2023.
- Haiping, A., Kai, Z., Jiachun, S., and Huichun, Z., Short-term Lake Erie Algal Bloom Prediction by Classification and Regression Models, Water Research, vol. 232, 2023.
- Hongye, C., Ling, H., and Liangzhi, L., A Deep Learning Method for Cyanobacterial Harmful Algae Blooms Prediction in Taihu Lake, China, Harmful Algae, vol. 113, p. 1, 2022.
- Hyo, G. K., Kyung, H. C., and Friedrich, R., Time-Series Modelling of HarmfulCyanobacteria Blooms by Convolutional Neural Networks and Wavelet Generated Time-Frequency Images of Environmental Driving Variables, Water Research, vol. 246, p. 1, 2023.
- Jie, N., Yanqun, L., Mengyu, X., Linjian, O., Lei, C., Han, Q., and Songhui, L., Prediction of Aureococcus anophageffens Using Machine Learning and Deep Learning, Marine Pollution Bulletin, vol. 200, p. 1, 2024.
- Jung, M. A., Jungwook, K., Hongtae, K., and Kyunghyun, K., Harmful Cyanobacterial Blooms Forecasting Based on Improved CNN-Transformer and Temporal Fusion Transformer, Environmental Technology & Innovation, vol. 32, pp. 1-9, 2023.
- Kambezidis, H., Comprehensive Renewable Energy, Elsevier, 2012.
- Khan, A. Q., Awan, H. A., Rasul, M., Siddiqi, Z. A., and Pimanmas, A., Optimized Artificial Neural Network Model for Accurate Prediction of Compressive Strength of Normal and High Strength Concrete, Cleaner Materials, vol. 10, pp. 2-6, 2023.
- Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. E., Data Preprocessing for Supervised Learning, International Journal of Computer Science, vol. 1, no. 1, p. 111, 2006.
- Lecun, Y., Bengio, Y., and Hinton, G., Deep Learning, Nature, vol. 521, no. 7553, 436-444, 2015.
- Lee, S. and Lee, D., Improved Prediction of Harmful Algal Blooms in Four Major South Korea’s Rivers using Deep Learning Models, International Journal of Environmental Research and Public Health, vol. 15, 2018.
- Mellios, N., Moe, S. J., and Laspidou, C., Machine Learning Approaches for Predicting Health Risk of Cyanobacterial Blooms in Northern European Lakes, Water, vol. 12, no. 1191, p. 1, 2020.
- Nowicka-Krawczyk, P., Żelazna-Wieczorek, J., Skrobek, I., Ziułkiewicz, M., Adamski, M., Kaminski, A., and Żmudzki, P., Persistent Cyanobacteria Blooms in Artificial Water Bodies: An Effect of Environmental Conditions or the Result of Anthropogenic Change, International Journal of Environmental Research and Public Health, vol. 19, no. 6990, p. 2, 2022.
- Park, Y., Lee, H. K., Shin, J.-K., Chon, K., Kim, S., Cho, K. H., Kim, J. H., and Baek, S.-S., A Machine Learning Approach for Early Warning of Cyanobacterial Bloom Outbreaks in a Freshwater Reservoir, Journal of Environmental Management, vol. 288, p. 1, 2021.
- Saoudi, A., Cyanobacteria and Cyanotoxins in the Water of the Mexa Dam (El-Tarf), Dept. Biochemistry. Ecobiology of Marine and Coastal Environments Laboratory, ANNABA, 2015-2016.
- Saoudi, A., Choukri, B., Luc, B., Rachid, O., and Mourad, B., Environmental Parameters and Spatio-Temporal Dynamics of Cyanobacteria in the Reservoir of Mexa (Extreme North-East of Algeria), Advances in Environmental Biology, vol. 9, no. 11, p. 109, 2015.
- Singh, V. K., Upsampling Interpolation of Discrete Signals, divilabs, 10 July 2014. [Online]. Available: https://www.divilabs.com/2014/07/upsampling-interpolation-of-discrete.html. [Accessed 04 June 2024].
- Smith, G., Essential Statistics, Regression, and Econometrics, Elsevier Inc, 2012.
- Thu-Hien, T. and Nhat-Duc, H., Predicting Colonization Growth of Algae on Mortar Surface with Artificial Neural Network, Journal of Computing in Civil Engineering, vol. 30, p. 1, 2016.
- Xu, Y., Zhang, D., Lin, J., Peng, Q., Lei, X., Jin, T., Wang, J., and Yuan, R., Prediction of Phytoplankton Biomass and Identification of Key Influencing Factors Using Interpretable Machine Learning Models, Ecological Indicators, vol. 158, 1-6, 2024.
- Zanchett, G. and Oliveira-Filho, E. C., Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects, Toxins, vol. 5, no. 10, p. 2, 2013.
- Zemmal, N., Benzebouchi, N., Azizi, N., et al., Unbalanced Learning for Early Automatic Diagnosis of Diabetes Based on Enhanced Resampling Technique and Stacking Classifier, International Journal of Intelligent Information Technologies (IJIIT), vol. 18(1)., p. 29, 2022.