References
- Firoozi R., Tucker J., Tian S., Majumdar A., Sun J., Liu W., Zhu Y., Song S., Kapoor A., Hausman K., Ichter B., Driess D., Wu J., Lu C., and Schwager M. Foundation models in robotics: Applications, challenges, and the future, 2023.
- Jaquier N., Welle M. C., Gams A., Yao K., Fichera B., Billard A., Ude A., Asfour T., and Kragic D. Transfer learning in robotics: An upcoming breakthrough? a review of promises and challenges. The International Journal of Robotics Research, 44(3):465–485, 2025.
- Nalepa G. J. and Stefanowski J. Artificial intelligence research community and associations in poland. Foundations of Computing and Decision Sciences, 45(3):159–177, 2020.
- Skrzypczyński P. and Kornuta T. Preface to the special issue on recent progress in 3-D visual perception of robots. Foundations of Computing and Decision Sciences, 42(3):179–182, 2017.
- Sünderhauf N., Brock O., Scheirer W., Hadsell R., Fox D., Leitner J., Upcroft B., Abbeel P., Burgard W., Milford M., and Corke P. The limits and potentials of deep learning for robotics. The International Journal of Robotics Research, 37(4–5):405–420, 2018.
- Tang C., Abbatematteo B., Hu J., Chandra R., Mart/ın-Mart/ın R., and Stone P. Deep reinforcement learning for robotics: A survey of real-world successes. Proceedings of the AAAI Conference on Artificial Intelligence, 39(27):28694–28698, 2025.