Have a personal or library account? Click to login
On feature extraction using distances from reference points Cover

On feature extraction using distances from reference points

Open Access
|Sep 2024

References

  1. Bonacich P. and Lloyd P. Calculating status with negative relations. Social Networks - SOC NETWORKS, 26:331–338, 2004.
  2. Buhmann M. D. Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2003.
  3. Canuto S., Sousa D., Goncalves M., and Rosa T. A thorough evaluation of distance-based meta-features for automated text classification. IEEE Transactions on Knowledge & Data Engineering, 30(12), 2018.
  4. Chollet F. et al. Keras. https://keras.io, 2015.
  5. Dua D. and Graff C. Uci machine learning repository. http://archive.ics.uci.edu/ml, 2017.
  6. Everett M. and Borgatti S. Networks containing negative ties. Social Networks, 38:111–120, 2014.
  7. Gharbali A., Najdi S., and Fonseca J. Investigating the contribution of distance-based features to automatic sleep stage classification. Computers in Biology and Medicine, 96, 2018.
  8. Hallajian B., Motameni H., and Akbari E. Ensemble feature selection using distance-based supervised and unsupervised methods in binary classification. Expert Systems with Applications, 200:116794, 2022.
  9. Hanczar B., Courtine M., Benis A., Hennegar C., Clément K., and Zucker J.-D. Improving classification of microarray data using prototype-based feature selection. SIGKDD Explor. Newsl., 5(2):23–30, 2003.
  10. Iwana B. and Uchida S. Time series classification using local distance-based features in multi-modal fusion networks. Pattern Recognition, 97:107024, 2019.
  11. Kohonen T. Learning Vector Quantization, pages 175–189. Springer, 1995.
  12. Linja J., Hämäläinen J., Nieminen P., and Kärkkäinen T. Feature selection for distance-based regression: An umbrella review and a one-shot wrapper. Neuro-computing, 518:344–359, 2023.
  13. López-Iñesta E., Grimaldo F., and Arevalillo-Herráez M. Comparing feature-based and distance-based representations for classification similarity learning. volume 269 of Frontiers in Artificial Intelligence and Applications, 2014.
  14. Nova D. and Estévez P. A. A review of learning vector quantization classifiers. Neural Computing and Applications, 25(3):511–524, 2014.
  15. Piernik M., Brzezinski D., Morzy T., and Morzy M. Using network analysis to improve nearest neighbor classification of non-network data. In Proceedings of the 23rd International Symposium on Foundations of Intelligent Systems, volume 10352 of LNCS, pages 105–115, 2017.
  16. Piernik M. and Morzy T. A study on using data clustering for feature extraction to improve the quality of classification. Knowledge and Information Systems, 63:1771–1805, 2021.
  17. Ravichandran J., Kaden M., and Villmann T. Variants of recurrent learning vector quantization. Neurocomputing, 502:27–36, 2022.
  18. Sathe S. and Aggarwal C. C. Similarity forests. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, page 395–403. ACM, 2017.
  19. Tsai C.-F., Lin W.-Y., Hong Z.-F., and Hsieh C.-Y. Distance-based features in pattern classification. EURASIP Journal on Advances in Signal Processing, 2011, 2011.
DOI: https://doi.org/10.2478/fcds-2024-0015 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 287 - 302
Submitted on: Nov 8, 2023
Accepted on: Jun 10, 2024
Published on: Sep 19, 2024
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Maciej Piernik, Tadeusz Morzy, Robert Susmaga, Izabela Szczęch, published by Poznan University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.