References
- Bonacich P. and Lloyd P. Calculating status with negative relations. Social Networks - SOC NETWORKS, 26:331–338, 2004.
- Buhmann M. D. Radial Basis Functions: Theory and Implementations. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2003.
- Canuto S., Sousa D., Goncalves M., and Rosa T. A thorough evaluation of distance-based meta-features for automated text classification. IEEE Transactions on Knowledge & Data Engineering, 30(12), 2018.
- Chollet F. et al. Keras. https://keras.io, 2015.
- Dua D. and Graff C. Uci machine learning repository. http://archive.ics.uci.edu/ml, 2017.
- Everett M. and Borgatti S. Networks containing negative ties. Social Networks, 38:111–120, 2014.
- Gharbali A., Najdi S., and Fonseca J. Investigating the contribution of distance-based features to automatic sleep stage classification. Computers in Biology and Medicine, 96, 2018.
- Hallajian B., Motameni H., and Akbari E. Ensemble feature selection using distance-based supervised and unsupervised methods in binary classification. Expert Systems with Applications, 200:116794, 2022.
- Hanczar B., Courtine M., Benis A., Hennegar C., Clément K., and Zucker J.-D. Improving classification of microarray data using prototype-based feature selection. SIGKDD Explor. Newsl., 5(2):23–30, 2003.
- Iwana B. and Uchida S. Time series classification using local distance-based features in multi-modal fusion networks. Pattern Recognition, 97:107024, 2019.
- Kohonen T. Learning Vector Quantization, pages 175–189. Springer, 1995.
- Linja J., Hämäläinen J., Nieminen P., and Kärkkäinen T. Feature selection for distance-based regression: An umbrella review and a one-shot wrapper. Neuro-computing, 518:344–359, 2023.
- López-Iñesta E., Grimaldo F., and Arevalillo-Herráez M. Comparing feature-based and distance-based representations for classification similarity learning. volume 269 of Frontiers in Artificial Intelligence and Applications, 2014.
- Nova D. and Estévez P. A. A review of learning vector quantization classifiers. Neural Computing and Applications, 25(3):511–524, 2014.
- Piernik M., Brzezinski D., Morzy T., and Morzy M. Using network analysis to improve nearest neighbor classification of non-network data. In Proceedings of the 23rd International Symposium on Foundations of Intelligent Systems, volume 10352 of LNCS, pages 105–115, 2017.
- Piernik M. and Morzy T. A study on using data clustering for feature extraction to improve the quality of classification. Knowledge and Information Systems, 63:1771–1805, 2021.
- Ravichandran J., Kaden M., and Villmann T. Variants of recurrent learning vector quantization. Neurocomputing, 502:27–36, 2022.
- Sathe S. and Aggarwal C. C. Similarity forests. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, page 395–403. ACM, 2017.
- Tsai C.-F., Lin W.-Y., Hong Z.-F., and Hsieh C.-Y. Distance-based features in pattern classification. EURASIP Journal on Advances in Signal Processing, 2011, 2011.