References
- Adamkaite J., Streimikiene D., Rudzioniene K., The impact of social responsibility on corporate financial performance in the energy sector: Evidence from Lithuania, Corp Soc Responsib Environ Manag., 2022, 1–14, DOI: 10.1002/csr.2340.
- Afonso M.H.F., Souza J.V., Ensslin S.R., Ensslin L., How to build knowledge about the research topic? Application of the ProKnow-C process in the search for literature on sustainable development assessment [Como construir conhecimento sobre o tema de pesquisa? Aplicação do processo ProKnow-C na busca de literatura sobre avaliação do desenvolvimento sustentável], Social and Environmental Management Magazine [Revista de Gestão Social e Ambiental – RGSA], 5, 2, 2011, 47-62.
- Ahmad T., Zhang D., Huang C., Zhang H., Dai N., Song Y., Chen H., Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities, Journal of Cleaner Production, Artificial intelligence in sustainable, 289, 2021, https://doi.org/10.1016/j.jclepro.2021.125834.
- ANEEL, National Electric Energy Agency, Normative Resolution [Agência Nacional de Energia Elétrica, Resolução Normativa] nº 605, 11/03/2014, 2014.
- ANEEL, National Electric Energy Agency, Electrical Sector Accounting Manual [Agência Nacional de Energia Elétrica, Manual de Contabilidade do Setor Elétrico (MCSE)], 2015.
- ANEEL, National Electric Energy Agency, Economic-Financial Information Center [Agência Nacional de Energia Elétrica, Central de Informações Econômico-Financeiras], 2021, Https://www.aneel.gov.br/central-de-informacoes-economicofinanceiras?p_p_id=ciefseuser_WAR_ciefseportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_pos=1&p_p_col_count=3, [Accessed 30 March 2021].
- ANEEL, National Electric Energy Agency, Central content, reports and distribution indicators [Agência Nacional de Energia Elétrica, Central de conteúdos, relatórios e indicadores de distribuição], 2022a, Https://www.gov.br/aneel/pt-br/centrais-deconteudos/relatorios-e-indicadores/distribuicao, [Accessed 29 August 2022].
- ANEEL, National Electric Energy Agency, Electrical Sector Accounting Manual [Agência Nacional de Energia Elétrica, Manual de Contabilidade do Setor Elétrico (MCSE)], 2022b.
- Aven T., Risk Analysis, United Kingdom: John Wiley & Sons, Ltd, 2nd ed., 2015.
- Aven T., Ylonen M., The Enigma of Knowledge in the Risk Field, in Aven, T., Zio, E. (Eds.): Knowledge in Risk Assessment and Management, Oxford: John Wiley & Sons Ltd., 2018.
- Blaszczynski J., Greco S., Matarazzo B., Slowinski R., Szelag M., jMAF - Dominance-based Rough Set Data Analysis Framework, Chapter 5 [In]: A. Skowron, Z. Suraj (Eds.), Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam, 1, Intelligent Systems Reference Library, 42, 185-209, Springer, 2013.
- Blaszczynski J., Slowinski R., Szelag M., VC-DomLEM: Rule induction algorithm for variable consistency rough set approaches. Technical Report RA-07/09, Poznań, University of Technology, 2009.
- Blaszczynski J., Slowinski R., Szelag M., Sequential covering rule induction algorithm for variable consistency rough set approaches. Inf Sci, 2011, 181:987–1002.
- Colla M., Ioannou A., Falcone G., Critical review of competitiveness indicators for energy projects., Renewable & Sustainable Energy Reviews, 2020, 125.
- Couto A.B.G., Gomes L.F.A.M., Sovereign rating analysis through the dominance- based rough set approach, Foundations of Computing and Decision Sciences, 2020, 45, 1, 3-16, https://doi.org/10.2478/fcds-2020-0001.
- Dong R., Shao C., Xin S., Lu Z., A Sustainable Development Evaluation Framework for Chinese Electricity Enterprises Based on SDG and ESG Coupling, Sustainability, 15, 8960, 2023, https://doi.org/10.3390/su15118960.
- Du W.S., Hu B.Q., Dominance-based rough fuzzy set approach and its application to rule induction, European Journal of Operational Research, 261, 2, 2017, 690–703.
- Ekel P., Pedrycz W., Pereira JR. J., Multicriteria decision-making under conditions of uncertainty: A fuzzy set perspective, Hoboken, NJ, USA: John Wiley & Sons, Inc., 1st ed., 2020.
- Elkington J., Green swans: The coming boom in regenerative capitalism, Fast Company Press, New York, 2020.
- Ensslin S.R., Ensslin L., Yamakawa E.K., Nagaoka M.P.T., Aoki A.R., Siebert L.C., Structured process of literature review and bibliometric analysis on performance assessment of energy efficiency implementation processes [Processo estruturado de revisão da literatura e análise bibliométrica sobre avaliação de desempenho de processos de implementação de eficiência energética], Brazilian Energy Magazine [Revista Brasileira de Energia], 2014, 20, 1, 21-50.
- Gardazi S.S.N., Hassan A.F.S., Johari J.B., Board of Directors Attributes and Sustainability Performance in the Energy Industry, Journal of Asian Finance, Economics and Business, 2020, 12, 317-328.
- Greco S., Inuiguchi M., Slowinski R., Fuzzy rough sets and multiple-premise gradual decision rules, International Journal of Approximate Reasoning, 2006, 41, 2, 179–211.
- Greco S., Matarazzo B., Slowinski R., Fuzzy set extensions of the dominance-based rough set approach’, in Bustince, H. et al. (Eds.): Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Springer, 2008.
- Greco S., Matarazzo B., Slowinski R., Zanakis S., Global investing risk: a case study of knowledge assessment via rough sets, Ann Oper Res, 2011, 185, 105–138, DOI 10.1007/s10479-009-0542-3.
- Greco S., Pawlak Z., Slowinski R., Can Bayesian confirmation measures be useful for rough set decision rules?, Engineering Applications of Artificial Intelligence, 2004, 17, 345–361, doi:10.1016/j.engappai.2004.04.008.
- GRI, Global Reporting Initiative, Sustainability Reporting Guidelines & Electric Utility Sector Supplement, RG version 3.0/EUSS, 2000.
- Jensen R., Cornelis C., A new approach to fuzzy-rough nearest neighbour classification, in Chan, C. C., Grzymala-Busse, J. W. and Ziarko, W. P. (Eds.): Rough Sets and Current Trends in Computing, RSCTC 2008, Lecture Notes in Computer Science, 5306, 310–319, Berlin: Springer, 2008.
- Jensen R., Cornelis C., Fuzzy-rough instance selection, WCCI IEEE World Congress on Computational Intelligence, 2010, 1776–1782.
- Jensen R., Cornelis C., Fuzzy rough nearest neighbour classification and prediction, Theoretical Computer Science, 2011, 412, 42, 5871–5884.
- Jensen R., Cornelis C., Shen Q., Hybrid fuzzy-rough induction and feature selection, IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Korea, 2009, 1151–1156.
- Kusunoki Y., Blaszczynski J., Inuiguchi M., Slowinski, R., Empirical Risk Minimization for Dominance-based Rough Set Approaches, Information Sciences, 2021, 567, 395-417, https://doi.org/10.1016/j.ins.2021.02.043.
- Lima G.A.B.O., Categorization models: presenting the classic model and the prototype model [Modelos de categorização: apresentando o modelo clássico e o modelo de protótipos], Perspectives in Information Science [Perspectivas em Ciência da Informação], 2010, 15, 2, 108-122.
- Luo C., Ju Y., Dong P., Gonzalez E.D.R.S., Wang A., Risk assessment for PPP waste-to-energy incineration plant projects in china based on hybrid weight methods and weighted multigranulation fuzzy rough sets, Sustainable Cities and Society, 2021, 74, 103120, https://doi.org/10.1016/j.scs.2021.103120.
- Milojevic M., Urbanski M., Terzic I., Prasolov V., Impact of non-financial factors on the effectiveness of audits in energy companies, Energies, 2020, 13.
- Nowicki R. K., Rough Set–Based Classification Systems, Studies in Computational Intelligence, 802, Switzerland: Springer, 2019.
- ODS BRASIL, Sustainable development goals [Objetivos de desenvolvimento sustentável], 2022a, Https://odsbrasil.gov.br/home/agenda, [Accessed 25 January 2022].
- ODS BRASIL, Sustainable development goals [Objetivos de desenvolvimento sustentável], 2022b, Https://odsbrasil.gov.br/relatorio/sintese, [Accessed 25 January 2022].
- Pawlak Z., Rough sets, Int. J. Comput. Inf. Sci, 1982, 11, 341-356.
- Pawlak Z., Rough sets. Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Dordrecht, 1991.
- Pawlak Z., Rough sets and decision analysis, Information Systems & Operational Research, 38, 3, 132-144, 2000.
- Pawlak Z., Rough sets, decision algorithms and Bayes’ theorem, European Journal of Operational Research, 136, 181-189, 2002.
- Pawlak Z., Grzymala-Busse J., Slowinski R., Ziarko W., Rough sets, Communications of the ACM, 1995, 38, 11, 88-95.
- Pawlak Z., Slowinski R., Rough set approach to multi-attribute decision analysis, European Journal of Operational Research, 1994, 72, 443-459.
- Paz F.J., Kipper L.M., Sustainability in organizations: advantages and challenges [Sustentabilidade nas organizações: vantagens e desafios], Production Management, Operations and Systems, [Gestão da Produção, Operações e Sistemas], 2016, 11, 2, 85-102.
- Pereira Neto F., Cândido G. A., Corporate sustainability: definition of indicators for organizations in the energy sector [Sustentabilidade corporativa: definição de indicadores para organizações do setor energético], Portuguese Speaking Countries Management Magazine [Revista de Gestão dos Países de Língua Portuguesa], 2020, 19, 2, 104-126.
- Riza L.S., Janusz A., Bergmeir C., Cornelis C., Herrera F., Slezak D., Benitez J.M., Implemeting algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets”, Information Sciences, 2014, 287, 68-89.
- Riza L.S., Janusz A., Slezak D., Cornelis C., Herrera F., Benitez J.M., Bergmeir C., Stawicki S., Data Analysis Using Rough Set and Fuzzy Rough Set Theories, 2019, Hhttps://cran.r-project.org/web/packages/RoughSets/RoughSets.pdf, [Accessed 12 March 2021].
- Shahbaz M., Karaman A.S., Kilic M., Uyar A., Board attributes, CSR engagement, and corporate performance: What is the nexus in the energy sector?, Energy Policy, 2020, 143.
- Shaheen T., Ali M.I., Shabir M., Generalized hesitant fuzzy rough sets (GHFRS) and their application in risk analysis, Soft Computing, 2020, https://doi.org/10.1007/s00500-020-04776-0.
- Slowinski R., Greco S., Matarazzo B., Rough set and rule-based multicriteria decision aiding, Pesquisa Operacional, 2012, 32, 2, 213-269.
- WCED, World Commission on Environment and Development, Our common future. Oxford University Press, Oxford, 1987.
- Zhao S. Y., Tsang E.C.C., Chen D. G., Wang X. Z., Building a rule-based classifier – a fuzzy-rough set approach, IEEE Transactions on Knowledge and Data Engineering, 2010, 22, 5, 624–638.
- Zhou P., Yyuksel S., Dincer H., Uluer G.S., Balanced scorecard-based evaluation of sustainable energy investment projects with IT2 fuzzy hybrid decision making approach, Energies, 2019, 13.